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INTRODUCTION

We review in these lectures the foundagions of the
solution of the initial value problem in General Relativity and
some recent advances.

In the first chapter we establish the 3+1 splitting
of Einstein equations, and we explain how the ''temporal gauge"
(zero shift), together with an approbriate choice of lapse
enables one to write, out of these equations, a well posed,
causal, hyperbolic system to determine the evolution of initial
data satisfying the constraints.

In the second chapter we show how the constraints can
be solved through the conformal method, initiated by Lichnerowicz
and developped by Choquet-Bruhat and York.

In the third chapter we review the recent proofs of
positivity of the gravitational énergy due to Schoen and Yau,

and to Witten.



NOTATIONS

Space time M: 4-dimensional ¢” manifold

Space time metric g or g signature (-,+,+,+), u,v=0,1,2,3

uv'
Space time covariant derivative V or Vu

. ] u
Riem(g): VuVBuA - vﬂv u, = R B,l uul . X

: ] U ("
Ricc(t): RaB = Rul,ﬂ = 3 I‘u 8- 3 P At Ty BrA u'ra uI'B A
R(g) = R

A1 i
Fap =78 (3;,8g, + ¥g8y), - 9.8 % = S

Field equations:

: 1
Suv =R -7 By R = Tuv

S: Einstein tensor (Suv] , T: stress energy tensor (Tuv)

I - CAucHY PROBLEM

1. 3+1 Formulation of the Einstein Lquations

We consider a 4-dimensional C manifold M which has
the topology S x R. We denote by (x,t) € S xR the points of M.
We shall always take local coordinates adapted to the product
structure, xi - 1,2,3 coordinates on S and x? = t. We consider
on M a pseudo riemannian metric g which induces a non degenérate
metric g on each submanifold S, x? = t). In local coordinates
we have

- —~ij

855 = Biy . g inverse matrix of Eij a-1)



and the identity ()

as? = g, axtaxt = "7 axhH? 4 gy atspian) @dspiax®)

where

L 0ot b
By =893 » B =88 =-g")7 g% (1-3)

We suppose, to specify the computationtz), that the St aTre spaces

00 > 0 and we set

-1/2
o= (-g%0 (1-4)

-like, that is g

o is (up\to a sign) the projection of the vector tangent to the
curve {x} x R on the unit normal n to 8+ it is called the lapse:
B, called the shift, is the projeétion of this vector on the
tangent plane to S¢. We have if n is the unit normal to St and

T = a/ax° the tangent to the time line

n0=-u,n0-a'1,n.so,niu-a'181,r.n-no s

A Ao A a

B” = T (gu + n.n )
The lapse and shift are thus linked with the choice of the trans-
versal curves to the St's. The geometry of one "slice" S5¢, as
submanifold of (M,g), is characterized by its induced metric g
and its "extrinsic curvature" K, symmetric two-tensor on S

proportional to the projection on the tangent plane to St of the

0i
1 - £0;8 . . s
i 0i 0i—ij

(1) consequence of 800 —;—m—-—- and g =-g 8 8g;
{2) The computation can be carried if 300 ¥ 0, that 'is g(v,v) ¢ 0 when v is
a normal to St, thus if St is not tangent to the isotropic cone of the metric.
Note that o =~ 0 (excluded by the hypothesis 300 > 0) weans that the line
{x} xR is tangent to 5.» in contradiction with the hypothesis V = 5 XR .



Lie derivative of g with respect to a vector field n which
coincides on S with its unit normal. The projection operator

is given by a contraction with the 2-tensor

P R I Q-5)
and we have (3}
K= - L wLn i e K. [ 1(V.n.+v.n.) - -nl‘?. (1—6)
K ’ R B A Sk A T | ij L
j 2 ij -
Kig = =6n Kij s Kjg = @ n'n Kij (1-7)

a simple computation gives that (1-6) is equivalent to (V is the
covariant derivative in the metric g):

ig = -2aK + L {(g) , i.e. ig-%l « -2aK., + V.8, + V.B. (1-8)
@ B 1} i) J1

The Einstein equations Slu = Tlu can be formulated in terms of
8, K, o and B. The computation is easy when the shift is zero:
this hypothesis is no restriction on the space time, since the
faﬁily of 3-manifolds S¢ admit always orthogonal trajectories,
tangent to the non vanishing vector, field n. We shall also see
that this choice of ''gauge' is coherent with the proof of an
existence existence theorem for solutions. Anyway we can also
deduce from computations done with zero shift intrinsic relations

(cf (1-12), (1-13)). When 8 = 0 the metric reduces to

Lﬂ_* is & tensor on 5, K € (& Ts)z

0 00

-0
msBK“B BipBia
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2 i. j
ds” = - 2(dxo)- * 85 dx*tax’

and (1-8) to:

3By (1-9)

=-2aK , i,e. T ="-2a Kij

o o

while (overlined quantities are relative to %)

k k
Py =Tiy

i i o 1 ..

ro'y = -y, 1% - -ty

0 1 i i 6 1.,
Toi=a%% » Toogmwd e , Tgga=gda .

We deduce from these formulas and the definition of Rice(g),

after some simplifications:

-7 -1 h h -1 = .
Rij = Kij -t B Kys - 2 Kyy Ky e Kijkp = o7 V950, (1-10)

- = + h h

2, .1 =i -1, .h i '
Rypsa (™' ¥ djar o Ky - K, Kj ) ’ (I-IOCJ

and using
298 = 2 o xH
the scalar curvature

0

_ 0 iy . B2 ' 1. -
R=g R+ g 7Ry, = R v k2 xijle - 2071 5ok - 2a 7,080

We deduce from these identities the following ones

. o __
o » . h.2 o
S00 = Roo - 7 8gp R = 7 R-K7K,% + (xy®) -1



- - = h h
SOi = Rﬂ.i. = (l(- Vh K.i. +* Bi K-hJ {1-11b)

which depend only on g and X on S, and a.

2

We remark that a” S(}0 is a scalar function on 5; expression in

the chosen "gauge™ (zero shift) of the scalar

S|| = Sas nn® , al .ol Rl

which, in an arbitrary shift, can also be written

- OB - 00 2
Sll z 5 nng = S o
while o~ ! Sg; are the components of a covariant vector Sl on

S¢» which can be written, for an arbitrary shift

B

(Sl)i ® 0y SGB T

that is

0
(Sl)i = - a8

We have thus obtained a first set from the Einstein equations
{(1-10) called constraints because they contain no second
derivatives Qf the unknown (remark also that the left hand sides
depend only on g and X on §,), which we write, in coordinate

free notation:
R-KK+ (tr)% =20 , = T (1-12,) -

V.K -V trK=j j =-Tl (1-12,)

The ideﬁtity (1-1033 can also be written intrinsically with the

help of the projection operator 7 on S:

m Rice(g) = - np K + Ricc(g) - 2K.K + K tr X - Hess(a)



since we have:

o B
(nLnK)ij = “i"j

EpKlap = pK)yy

) u U
=n alKij + xiuajn + Kjuain

thus, for a zero shift, in agreement with formula (I-IOaJ

- =1
{ﬂLnK)ij = a 30 Kij

‘For a non zero shift we have (cf. (1-7))

-1 .j
KiO = -anJKij R gj = -0 BJ
thus
. -1 h, .. h h
(ﬂLnK)ij = O aoxij + 1N ahkij + Kihajn + Knhain
: h, -1 v oDy =1
- Kihn aju - thn aiu
= a3 k.. - el (E0..
0™ij B™ij '

where EB is the Lie derivative with respect to the vector field
B on S.. The "evolution" part of Einstein equations can therefore

be written, in the general case

k. .
1 i h h -1
E‘b‘tl = liij - KK e KKy - a7 0y 3; a
(1-13)
-a @K - (T, - o T)
B4 T iy T 7 By

We see that the constraints (1-12) are relations between g and K
and the sources, while (1-13) are equations which determine gk
on S, when g, K, and the lapse and shift are given on 8;- No

equation determines the derivatives of these last auantities



transversal to St: this non uniqueness of the solution corresponds
to the invariance by diffeombrphisms of the equations.

If we give arbitrarily « and B on some domain §-x1I,
Ic R, together the source T and if we give _E and X on S,
.0 € I, the equations (1-13) determines 30K on S0 (we know already
aOE from (1-8)), and all derivatives of K and g are obtained by
successive derivations (if T initial data, e and B are €™): such
a computation does not pro§e the existence of a solution (except
eventually for analytic data) — moreover it must be-éhecked that
a solution of (1-13) on $ x I, with initial data satisfying the
constraints (1-12} on 59 satisfies the equations on 5 x I is not
true for an arbitrary T: it can be proved using the Bianchi
identities, in the analytic case with arbitrary_lapse and shift,

(4)

in vacuum (T = 0). Non zero sources have to satisfy the

so-called "conservation equations"

»
v, .0 .

2, Cauchy Problem

A solution of Einstein. equation GAu - Tlu must satisfy,

on each submanifold S, the equations, called constraints

- K.K+ tr K = 2p '{2-1.)

T.K-VtrKaej (2-14)

.(4)This result is- already contained in the 1922 paper of Elie Cartan, which

proved that the Einstein equations in vacuum, written as an exterior
differential system, are in involution.



where p = Tll and j = -Tl are respectively the densities of
energy and momentum of the sources.

The probiem we will adress ourselves in ths paragraph
is: suppose these necessary conditions satisfied on a given
3-manifold §, by given g and K, are they sufficient for the
existence of a space time (V,g), satisfying Einstein equations
and admitting S0 as an imbedded submanifeld on which it induces
the metric g and the extrinsic curvatura K ? ‘Ne.shall show that
the answer is yes in vacuum, and extend the result to simple

models for the sources.

To simplify the equations to solve we loock for a space
time V = S x I, g with zero shift: the time lines {x} x t will
be orthogonal to the 5, (this is no restriction and has some
.analogy with the "temporal gauge” of Yang-Mills theory).

The identity (1-8) becomes:
og. .

i R -
T3 2 a Kij . (2-2)

and the identity (1-10,) gives, for a solution of vacuum Einstein

eduations
—-—lat - u(IiiJ. + 'Kijl(h - 2K ij) - vivja . (2-3}

We can give arbitrarily a, the squations (2-1) and (2-2) determine

then the derivatives %% and %% on So =S x {0} in terms of

the initial data g and K on Sy) and, formally, all their
derivatives by successive derivations of these equations (effect-
ively if the initial data are Cn, all derivatives whith appear

being again C* and products defined). However such a computation



Idocs not give the existence of a solution, except eventually
for gnalytic data, which is in any case very unsatisfactory since
the analytic hypothesis is in contradiction with the finite pro-
pagation velocity that we expect for the gravitational relati-
vistic field.

To wmake appear out of the equation (2-3) equations
wich resemble some “wave" equation we shall combine them with

the constraints which read here

2

L S N KZa0 , i.e. K-xijxlj » h? -0 @24
v.xii . vl
V.K-9trK=0 | o, 7,k . vk @-4,)
Lemma 1 with the choice of lapse
a = (det /2 g71/2 (2-5)

(a is some given tensor demsity on §, independent of t)

the system constituted of (2-2) and

2 - =
aBRij - a (visju - vjsiﬂ) =0 (2-6)
is a quasilinear hyperbolic systém for the unknown g§ (properly

riemannian metric) and K.

Proof: From the definitions of the connexion and the Ricci
tensor one deduces the formulas (Lichnerewicz 1961), setting
P08i; = 8ij >

. +k 1 =kh g = — -
PUTRE X (7igih + vﬁgih - thij) (2-1)
1 okh 5 oot Lo -



using on the one hand the relation (2-2), on the other hand the

Ricci identity we obtain:

_. =whs = =
3gRy; = T, Cak; ) - V) (k) kD) + 7,7, (kD)
k. h ~h
that is
- <h == h = oh '
= h = h = = h = = h
k h h
. th)K v @ o)y )r}: . (v u)Kh TRTCNE S R

(2-10)

Inserting the identities (1-11b) we obtain:

= wh . h
3oRy; = o TPy + uz’v iS50 - @ LUK ¢ £, @11

We have therefore, using (1-10_), setting a' = aoe, Kij=30Kij :

— . 2.2 = zh

O=a%g -7, 7

2= 1

IoRij - o T (3540 -a[jle + 55 K5 - oV, tr Ko £,y -

(2-12)
1 , . a' h
avlvju +a v'ﬁa-l’ v“*“u“h +
1h ® m

We see on (2-12) that 3 Ri. - a th j)0 contains no third deri-

071ij

vatives of the g's. It'will contain second derivatives of the K’
!

- -



only through the operator [] , and no third derivatives of a,

if we choose a such that

a“ tr K+ a' =0 (2-13)
since we have

o -V.KE .o Vi75 (o Kh) v W,

i%; ij
with
m.. & =-2(V.a)V - 2(V.a)V - oza” CV a)V (aKk) - 2(? 7. a) kP
ij = i _j h j i™h h
with the choice (2-13) the expression (2-12) reduces to
2= -
aokij - V(iSon = -a ] Kij * fij + “ij (2-14)
where fij is given by (2-10) and Qij by:
th —-k' -
nij = -mij + K].JKh - Khv v o - i j ?ku
1 m m
- Z_Kiij - 2 Kiij
'We remark that by (2-1) we have
(det §)' i
et e = - 2a K
the relations (2-13) is therefore
(det 3" .
“det 53— = -2a' =0
and its general solution for the scalar a is
a= (det P - al/? (2-15)

-y



with a an arbitrary, positive, scalar density on S (independant

of xﬂ).

Remark The gauge condition {with zero shift)

G'+a2trK-0

expresses that the submanifold S¢ satisfy the harmonicity
condution

A 0 . _Au,0
V le = g Flu = 0 -

The identity (2-14) shows that, with the choice (2-15) for « and

B = 0 the equations in vacuum RuB = 0 imply

2 .

these equations together with the definition (2-2) of K are a
third order system for g, with principal operator [ ] 3p, 2
hyperbolic operator if « # 0 and g is properly riemannian.
The explicit expression of the lower order terms, given by
(2-14), is irrelevant for the local existence theorem, but is
important for numerical computations, and could probably be used
for the study of global properties and the arising of singular-

ities.

Lemma 2 Let g and K-verify the hyperbolic system (2-2),(2-16),
and o be given by (2-13}, then Einstein tensor 58 corresponding
to the metria

~a?@x%? . %5 atad  , ae et/ gan

verifies a linear, homogeneous hyperbolic system.



Proof: By the Bianchi identities we have

v =0 (2-18)

which can be written, module linear terms in s%B
2,5°% + 7,810 = 0 (2-18,)
3553 + v;810 s 0 | (2-18,)

The equations (2-16) says that the metric (2-17) verifies the

equations

e

2
30R - o (viSjo + vjsioj = 0 .

ij

We have, in the case of zero shift

00 _ 0o 1 hk
thus _
gli - pij _ glj(g rbk _ uZSOO)
hk
and the equations (2-16) imply, modulo linear terms in s°°
2557 & - o2 @S0 L Vst 4 2 oF Ui v shO L o2 41T 5 SO0

from which we deduce, modulo linear terms in Suﬂ, by the Bianchi

identity (2-18b)

2 ho

aoslj = -az(-V'J‘SJ0 + vjslo) + o Slj vh S - (219

From which we deduce, modulo linear terms in SGB, ViS“B

ij . 2y wicj0
The Bianchi identities (2-18y) imply therefore, modulo linear

terms in S®® and ViS“B



Gs%so0 . | (2-20)

The system (2-18a), (2-19), (2-20) is a linear homogeneous syste
for the S®8 which can be shown to be hyperbolic by derivating
equation (2-20) with respect to xo. We then obtain a_thi:d_order

equation

[J 25590 = 0

af

where the symbel = 0 means module linear terms in S°°, their

first derivatives and the second derivatives of only s0 (we use

0 and

(2-18,) and (2-19) to eliminate second derivatives of 50
gy,

We can now give a general local existence the?rem for
the solution of the Cauchy problem under some regularity hypothe-
5is on the data. Inlorder to formulate these hypothesis in an
intrinsic way we endow the manifold S (supposed c”) with a given
broperly riemannian €” metric (3’ e, for instante the euclidean
metric if S is R>. We denote by 3 or 3, the covariant derivative
in this metric e. We say that tensor field on § is in the Sobolev
space Hs if it is in the closure with respect to the Hg norm of
the vector space of ¢~ tensor fields (of the same type) with

compact support. The H, norm of a tensor field f on § is

5 1/2
lelly_ - {[ 2 [a%£|2 ds}

Iakf] denotes the e-norm of the tensor field akf at a point

2 € 5 and dS the e-volume element of S: if f is a 2-tensor

lel2 ik _jh
|£]“ = £i56ne €

) -
the scalar density a in (2=15) can be determinant of e but not necessarily.

-



The existence theorem which follows is a consequence

of the hyperbolicity proven in lemmas 1 and 2 and of the standard
‘results on quasi linear hyperbolic systems (cf. J. Leray 1952,

P. Dionne 1954) as improved (concerning fegularity) in Hughes,
Kato and Marsden 1976, Choquet-Bruhat, Christodoulou et
Francaviglia 1978 (second order case), Choquet-Bruhat 1983

(third order case).

Thecrem Let {g,K) be two symmetric 2-tensors on a C” riemannian

manifold (S,e) such that

g is a continuous and bounded properly riemannian metric

and aE g Hs-1 5=-1 4
(g,X)  satisfy the constraints .

» KEH s 23

Then there exists a space tiﬁe.(v,g), VasSxI, IC R which
admits (5,g,K) as initiél data and satisfies the vacuum Einstein
equations.
We have formulated "globally in space' the Cauchy

problem, and have obtained the existence 6f a sblution on 8 x I,
Ic R.

By iﬁtroducing'weights in the Sobolev spaces of the data
Christodoulou and O'Murchadha 1981 have been able to prove the .

4

existence of the solution in domains of R~ which allow for

3

boosts of the initial surface S « R if these data are asymptotia-

cally euclidean in an appropriate way (cf section II).
Another kind, in a sense opposite, generalization'valid
for all hyperbolic systems and essential for causality is the

loc
Hs

"localisation" of the Cauchy problem.'The_spaées are defined



as spaces of tensor fields on S such their restriction to each
bounded open ball 2 of each coordinate chart bélongs_to Hs(n),
closure of C tensor fields on I with respect to thelg(n? NOTM «
The existence theorem is still valid if these spaces replace the
spaces H_ in the hypothesis and in the conclusion the domain

§ x I is replaced by a neighborhood U of § in S x IR. Moreoveér

it can be proved that the solution at a point x €.U depends only
on the Cauchy data given on S ) E(x) where B(x) denotes the

past of x, determined by the isotropic cones of g: such a property
is interpreted as a "finite propagation speed" of the gravitatio-

‘nal field.

3. Cauchy Problem with Sources

In the presence of sources with stress energy tensor

'I'.:‘B the Einstein equations are

%a8 = Tap : G-1

they imply (cf Bianchi identities (2-18)) the "conservation laws"

or “equations of motion" for the sources

v,I% .0 . (3-2)
Eventually (3-1) and (3-2) have to be completed by "constitutive
equations", for instance an "equation of state” in the case of a

‘perfect fluid. In that case we have {p and p proper energy den-

sity and pressure)

TGB - (9“‘1’) uGuB + P gua » uauu = a] . \. (3-—3)

The equation of state is the datum of a function



p = £(p)

To have a more realistic model one introduces also the density

of proper entropy S. The equation of state is then

p = £(p,5) (3-4)
and the equations (3-2) have to be completed by some thermodyna-
mical law. In the absence of dissipative phenomena this law is

tusually taken to be (“adiabatic” flow)
&
ua s =0 : (3-5)

which can be shown (Taub 1957, Lichnerowicz 1967) to be equivalent

to the conservation of baryon number
v,(r ) =0 , 1= f'l(p+p3

modulo the thermodynamic equation
TdS = df - ! dp

The equations of motion of a perfect fluid, deduced from (3-2)

are
(p+p) u-“i?auB + (g“s+g“us)aup = 0 (3-6)

a o
(p+p)va u” +.u 3ap =0 . (3-7)

The system of équations (3-5), (3-6), (3-7), with the relation
(3-4), can be proved (Choquet-Bruhat 1957) to be hyperbolic with
outer characteristic inside the isotropic cone of the metric g

if the equation of state is such that &’

e If %%_- 1 the fluid is said to be "ipcompreasible", the acoustic waves
have the same propagationm velocity as gravitation. The system is only hyper-
bolic in & generalized sense, the existence theorem is valid in a more resg-

tricted class of functions.



3.9.4:1
r

This system coupled with the Einstein equations (3-1) can also
be proved to be causal, by using the gauge of §2 (cf a proof

using harmonic coordinates in Choquet-Bruhat 1962),

Il - SOLUTIQN OF THE CONSTRAINTS

1. Intraduction

We have seen in §1 that — at least for simple models
of sources — to every solution of the constraints on an initial

3-manifold S:
RGE) - K.K + (tr K% = 2p a1y
V.K-VtrK=j (1.2)

corresponds a space time (M,g), essentially unique. A fundamental
" problem is therefore to conétruct gravitational initial data on
S-metric g and 2-tensor K — and non gravitational data —

scalar p = 111 {proper energy density - and vector j (proper mo-
mentum density) — that satisfy the four equations (1-1) and (1-2).
The unknown are largely redundant (they are still twelve, when
are j are given), but the equations are nen linear and oﬂly
global solutions on S are maeﬁingful. Moreover we know that the
equations (1-1) and (1-2) have different meaning: (1-2) is
essentially linked with the.invariance of the theory by isometries
of S, while {1-1), called thé hamiltonian constraint, has a

deeper meaning, still not well understood, but which seems to



contain the essential of the dJdynamics of the Einstein theory.
The conformal methed, which we describe in this section, provides
a decoupling of the two sets of constraints, (1-1) and (1-2), and
writes (1-1) as a (noﬁ linear) elliptic partial differential on

S for one scalar function.

2. The Conformal Method

It was remarked by Lichnerowicz (1944) that if we set

g =o'y . e g o $? Yij (2-1)

where vy is a given riemannian metric on S and ¢ some positive

scalar function we have the identity

R(E) = ¢ (R(Y) - 88.0) (2-2)
where bY is the scalar laplacian in the metric vy . He pfoved
moreover that if tr K = 0 and if we define A by:

Ald L 10 i (2-3)

the momentum constraint can be expressed as a linear system on A
which does not contain ¢, when vy is known. The proof goes as
follows.

The connections I(y) and I'(g) of the two éonformally

related metrics y and § are found to be related by

@ -T(yY) = C @2-4)

with the tensor C given by

i =1 i i ih
Cj K" 2¢ (6j3k¢-+ Gkan - Y ija‘h¢) -



From this identity the relation (2-1) results by a straightforward
computation. On the other hiand we have if D denotes the covariant

‘derivative in the metric y, for an arbitrary tensor B

LA IER W BN RN B 25
=8 4 1007 o ¢ M 207 IR, g tr B
while
Di(¢':10Aij} = oWt 106 At @0
- thus, if K1 is given by (2-3)
vkt = o710 p,atd - 297 1yIMy g er x . fﬁ-?)

which proves that if tr K = 0 and- j = 0 the momentum constraint
is equivalent to

i ' ij
If we'replace K in terms of A and ¢ we obtain a semi-linear

elliptic equation for ¢

BAY¢ R(y) ¢ Ale + 2p¢ 0. . {(2-8)

The system (2-7), (Z-Sj has been studied (Y. Choquet-Bruhat 1956)
and written as an eiliptic system (1971) J. York has shown that
the decoupling can be obtained in 2 more general case, namely
when tr K = constant, and even when j £ 0 by an appropriate

conformal scaling of the sources, as follows: set again

- .4 ' . - 4
g=¢y .,_ i.e. g]‘.j-¢Yij

27



but now(?)

S SR T (2-9)
where A is a symmetric traceless Z-tensor

i.e. tr A = AlJYij =0 , tr K=t ’

We deduce from (2-5) and (2-6)

-10 ,ij -10 ij

and we have therefore

v, k¥J - By 9 tr K= ¢

If we set

we see that the momentum constraint is equivalent to
ij 2 6 _ij ] _ L
D, A - 3.¢ YTy t=v o tr A = v Aij = 0 (2-10)
these are linear equations for A when vy is given, not containing
¢, as announced, if 1 = constant.
York argued for the conformal weight given to j by
taking radiation, for instance electromagnetic, as a source. He

also argued that the proper scaling for the scalar product part

p of the source is:

o =98¢ (2-11)
) If we lower indices of K with g and of A with Y the relation (2-9) reads
-2 1 =
Kisg =% Ay v38; T



where q is a given scalar on S.

The hamiltonian constraint then reads

B

88,4 - R(Y) - o~ A.A 4 % 6°12 w2673 =0 . (2-12)

This semi-linear elliptic equation for the unknown ¢, when A, T,
q are known, have better stability properties (cf. Choquet- ‘
-Bruhat and York 1980) that the equation (2-8) with unscaled
source. ' _

In the next two paragraphs we treat the uncoﬁpled

:system (2-10), (2-12), when v = constant.

3. Solutions of the Momentum Constraint

When 1 = constant, and j is given, the momentum cons-
traint obtained after conformal .rescalings is equivalent to the

linear system
ij j
Di A” = V¥ N (3-18)
tr A =0 . (3-1y)

The general solution of this (undetermined) system is obtained
by what is called a "York splitting" which we now describe. The

general solution of (3-1b) is

1 ' '
Ay, = Bi - 3 tr B (3-2)

ij ij Yij

where B is an arbitrary symmetric 2-tensor.

Replacing in (3'1a) we find:

Ly = p, BY sy e trBayi L (3-3)



The left hand side is a differential linear operator L from
symmetric 2-tensors into vectors, whose dual L", acting from
vectors into 2-tensors is defined by the equality of the inte-

grals, for all uw and B with compact support:

f uyLd (Bxdu (o) I uj 87 - yta e m) auny -

[ B 1Y) duen)

du(y) is the volume element of S in the metric Y. Performing an

integration by part wé find

* h

Lij (u)

1 1

r3-4)

-3 @ ) - 3 ¥ tr L)

where L (Y) is the Lié derivative of ¥ with respect to u.
The operator L* has "injective symbol" ¢ (L%): that is

if we replace the derivation D by a covariant vector & we obtain:

* 1 1 h
gij (L ) - ‘2‘ (giuj +Ejlli] + '3' 'Yijihu

and we have that

o(L*) = 0 for u ¢ 0 implies & = 0 .

For such operators, and for an appropriate functional space E
of tensor fields over $ one has the following general “splitting"

theorem (generalized from Fredholm cf Berger - Elbin 1969)

E = ker L" @ range L (3-5)

where the sum is Lz-orthogonal. Thus (3-3) has a solution B



(equivalently v € range L) if and only if v is Lz-orthogonai
to ker L. We note that - 2L"(u) determines the action of the
infinitesimal diffeomorphism generated by u on the tensor density
of weight - 2/3 associated with y (and which is the same for all

metrics conformal to v):

¥ = (det Y)'Ijs.y . (3-6)

Indeed the Lie derivative of ? with respect to u is-

LY = (et ) 3y - Jrrow) = - 2det 73 L) (3-7)

By (3-3) ker L" is identical-with the set of vector fields u

such that:
L,y - % tr L,y = 0, (3-8)

that is to the set of conformal Killing vectors of vy .
The equation (3-3) admits solutions (i.e. v € range L)
if and only if v is Lz-orthogonal to every conformal Killing

vector of v . We can formulate this as a theorem:

Theorem 1. The momentum constraint (3-1) admits Selutions for
every v if the manifold (S,y) admits no conformal Killing vector
field,

Z. If the manifold (S,y) admits a conformal Killing
vector u the momentum constraint (3-1) admits solutions if and
only if

h

Js Yih uiv du(y) = 0 . _ (3-9)

N



Remarks 1. A conformal Killing vector -of (S,y) is also a confor-
mal Killing vector of th: conformal manifold (S,g), W = ul. We

h 10.h
]

have Eip = ¢°vg;, thus du(® = ¢° du(y), and V" = 195", The

- relation (3-9) is therefore a conformal invariant (as seen by
0'Murchadha and York 1974), it can also be written, independantly

of @:

| B vt st @ 0

- 2. The numbér of linearly independant conformal Killing
vectors Bn an n = 3 dimensional manifold is %(n+1)(n+2) = 10:
“this maximum number is aftained, in the case of compact manifolds,
by 83. For non compact manifolds the functional spaces to be used
for the splitting theorem to be valid impose fall off properties |
at infinity of the unknown. The euclidean space m3 admits no
conformal Xilling vector tending to zero at infinity. The same
can be proved.to be true (0'Murchadha and Christodoulou 1981)
~ for asymptotically euclidean ﬁanifolds, and the appropriate funct-
ional spaces. The momentum cogstraint {(3-1) has then solutions

for every v.

3. The space of solutions of (3-1) (equivalently,(3-3))
- is, as usual,.the vectorial sum of ker L.and a particuiaf solution

which O’Hurchadha and York seek under the form

B = Ly(y) - % tr oy(v)

inspired by the dual form of the splitting theorem

E = ker L ® range L”
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They obtain tor the vector W (which they call a "vector potential")

the second order elliptic system

iz W) = .ot o+ 2 DIt ¢ RO o vi
L(B) = (LL'W)- = DiD W+ = D Diw + R W=V

By the previous arguments this second order operator on w has as
rd
kernel (in a given functional space of vector fields over S5) the

conformal Killing vectors of y (equivalently, g}, since
ker LL* = ker L"
as follows from the equality of the L2 scalar products
(LL*w,u) = (L*w,L*u) .

The existence of w is insured under the condition (3-3) on v
(which is no restriction if y admits no conformal Killing fields),
w is not unique, but B = Lw(T) - % tr L (y) is unique (since w

is determined up to addition ¢f a conformal Killing vectors).

4, Hamiltonian Constraint

We have seen in §2 that dfter conformal rescaling the
hamiltonian constraint becomes a semi-linear elliptic equation

for ¢, called Lichnerowicz equation, which we write

46 = P(¢) (4-1)
with
P(6) = cé - 26”7 + be> - do~>
A is the Laplace operator on functions, in the.metriC'v,c-éR{wJ,

1 1 .2
n-.-a-ﬁ.A,b-Tz'r,d=%p.

K



We note that, by their definition, we have a 2 0,
b2 0. We suppose also that the source have a positive energy
density, that is 4 2z 0,

We treat in this paragraph the case where S is compact,
that is cloﬁed without boundary. A consequence of the equation

(1-1), whose left hand side is a divergence, is then

[s P(o)du(y) = 0 . (4-2)

It is therefore necessary, for (1-1} to have a solution ¢, that
P(3) changes sign on S, thus since we want this solution to be
positive, the polynomial (with z = ¢4 and a, b, ¢ given funct-
ions of x € S)

Q(z) = o' P(o) = b2® 4 c2? - dz - a (4-3)
.must have at least one positive root for some point x € S. Note
that Q(0) $ 0. A general method of proof of existence of
solutions of second order quasi linear elliptic equatiecns on
- compact manifolds which applies to (4-1) (cf. Y. Choquet-Bruhat
1972) was given by Choquet-Bruhat and Leray (1972) using the
Rtlder spaces Ck’Q. In the case of a 3-dimensional manifold the

z and

Sobolev spaces H, can be also used. We have seen HycC
Hz; is an algebra. The following theorem gives a sufficient
condition (not necessary) for the Lichnwrowicz equation to have

- & positive splution on S.

Theorem 1. If ¥ € H4 is a properly riemannian metric on §
{(compact); a, b, ¢, d € Hz, and there exists two constants £ and

mn such that on §



P(2) <0 and Pm) >0 with 0< 4t <a (4-4)

then the equation (4-1) admits at least one solution ¢ € H4,

¢$ >0 on S.

2. 1f a2z 0, bgo0, 420 suficient conditions
for (4-4) to be satisfied are either
i) b>0, a+d 2 0 and a+d # 0 with ¢ < 0 when-
ever a+d = 0

ii) b =0, a+d > 0 and c > 0

Proof 1. It rests on the Leray-Schauder degree theory (cf\fof
instance Choquet-Bruhat and DeWitt-Morette 1982 p., 563): if the
degree of a mapping f from an open set @ of a Banach B into B ,
u' + v = f{u} is not zero at vgs then by the definition vy €
tange f, i.e. the equation Vg = f(u) as at least one solution
u€Q . The Leray-Schau#er (1934) fundamental theorem says that
if F, is a homotopy of compact maps ¥ + B, with ¥ the closure
of a bounded sef of B with boundary an,'such that (Id - FfJ(u)#vo

foa all u € 3%, then all the maps I1d - F,, 0 s t $ 1 have the

t’
same degree at v,. The map Id denotes the identity, which has _
degree 1 at vy is Vo €8 . When vy = 0 (origin of B) a solution

of (Id - £, )(u} = 0 is a fixed point of the mapping ?t.

A solution of the non linear elliptic equation (4-1)
is a fixed point of the mapping F: v + u defined by solution
of the linear elliptic equation (we write Au - u and not Au
in the left-hand side, because 4 is not invertible on a compact

manifold, having a non vanishing kernel)

Au - u = P(v) - v

R



The v + u mapping is well defined on the open set v > 0 of Hp,

due *o the following:

Lemma 1. On a compact riemannian manifeld (S,y) with vy € HZ'

the linear elliptic equation

du - u = f

with £ € H, has one and only one solution u € H, that satisfies,

for positive constants Cqs CZ depending on (S,y) the inequalities
IIuIH4 s ¢ IfIHz . (4-5,)

el s € HEl,, - (4-5;)

One uses alsc the fact that H, is an algebra when S is 3-dimensional
and that v > 0 is an open set of H, due to the topological in-
clusion B, & CO.
The mapping F is compact i.e. maps bounded sets of H,
into relatively compact sets due to the inequality (4-5a), and
the fact that a.bounded set of H, is relatively compact in
Hs’ 5 < 4,
The homotopic family Fes with Py = F can be defined

by, ¢ being a coastant
du - u = T(P(V)-v) + (t-1), , 6 sts . (4-6)

where Fy 1is the constant map v + u = ¢, It can be defined by

the resolution of the equation (independent of v)

AU -u=.c . (4-7)
The map F, has one fixed point, u « c[Id - F, has. degree 1 at zero].
. 0 0

The problem is to find a bounded open set § of H,, con-



at
taining ¢ such that the mappings F, -have no fixed point on 3R,

that is the equations
Au - u = t(P(u)-u) + (t-1)c . (4-8)

have no solution on 29.
The inequality (4-5b) is not sufficient to give the
. result, but the maximum principle will lead to the required esti

mate.

Lemma 2. (Maximum principle} If u is c? on s and at a point
X €S, ad <0 (au > 0), then u cannot attain a minimum (maximum)

at x.

Note that (lemma 1) a solution u of (4-8) is in H4,
therefore in Cz, if it is in H,. The hypothesis (4-4) allows us
to apply the lemma 2: there are two numbers £ > 0 and m > &
'such that P(2) < 0 and P(m) > 0 at ‘every point x € S. We

L+

choose for instance ¢ = 5> then if at a point x € S we have

- W(x) = & the equation (4-8) implies, at this point

su=tPW o -3 580, o0sts
and-

Au = t P(m) + (1-t) ﬂiﬁ >0 , 0st

A

m

A solution u of (4-8) cannot therefore attain a minimum equal
to £ , nor a maximum equal to m.

We choose for Q a bounded open set of H, of the type:

holy, <x (4-10,)

R<u<m . (4-fob)



To -show that (4-8) adnits no solution on 31 we suppose
that u € T; that is
quHZ sk, C(4-11)

and
L3S usm (4-11,)

and we show that u must then be in Q. The fact that £ £ u £ m
implies & < u < m has just been proved. We now remark that it

also imples

L+m
Jt(P(u)-u) + (1-t) ‘I‘ELZ s K ., 0s5ts )

where K, is a ‘constant which depends only on S, y, the coeffi-
cients a, b, ¢, d, £ and m. The inequality_(4-5b) gives then,

for all solutions of (4-8)
lunﬂz sC, Ky

It is therefore sufficient to choose the K of (4-10a) such that
K > C, Ky to insure that all solutions of (4-8) in § satisfy

the strict inequality (4-10a).

2. Under the hypothesis (i), or (ii) the polynomial Q
(cf (4-3)) has one and only one strictly positive root, for

every x € §.

Remark 1) In the case b > 0, that is for solutions (2,K) which
will satisfy tr K = constant # 0, it is possible to show existence
of g, conformal to a given metric¢ y, with only the hypothesis

that a+d 2 0 and a+d # 0 on an open subset U of M; that is

that A and p are not both identically zero on §, by making a

conformal transformation which makes the scalar curvature negative



on S\U (0'Murchadha and York 1973].

If A and p are both zerc on § the equation reduces to

B - co-b° «0 T, c=gRO , (4-12)

which expresses that the metric g = ¢4Y has for scalar curvature
the negative constant - %: it is clear (cf. (4-3)) that if b > 0
the equation (4-12) has no positive solution if ¢ 2 0. It has

been proved that a sufficient condition for the existence of a

positive solution is

Is R(y)du(y) 0 , R #0 .

2) b = 0, that is solutions for which the initial manifold
§ will be maximal (tr K = 0) in the space-time: the conditions for
existence of a solution are more resttictive_in this case, in
accordance with the fact that space times with closed space-like
sections do not in general possess a maximal such section. If
R(y) s 0 the Lichnerowicz equation (4-1) has no positive
solution (cf. (4-3)), for any A2 0 and p 2 0 (except the

trivial one ¢ = 1 if A = p = R(y) = 0),

111 - POSITIVITY OF THE GRAVITATIONAL ENERGY

It is a consequence of the equivalence principle that
there can be no pointwise intrinsic definition of a local density
of gravitational energy in General Relativity. However it is

possible to define the energy of a gravitational field, that is



.of a hyperbolic metric (pseudo riemannian with signature (-,+,+,+))
witﬁ respect to another given hyperbolic metric, sometimeswcalles
background metric. A local positive density of energy can be
defined for high frequency gravitational waves propagating in a
given background, for instance the Vaidya metric

ds? o o 1 - Wy ge? L 2gu dr o rP(d0? + sin’e d4?)
and there exists a relation between this energy and the variation
of the "mass™ m(u) (cf Choquet-Bruhat 1969). On the other hand if
this background metric is the Minkowski metric, and the gravita-
‘tional field is asymptotically minkowskian at spatial infinity,
it is possible (¢f Arnowitt, Deser, Misner 1962) to define on a
space-like slice a global energy, which is conserved by time
" evolution. It is also possible, in this asymptotically minkowskian
case, to define a conserved global linear 3-momentum of the
gravitational field, relative to a space like slice. It has been
conjectured that this energy is non negative for all solutions of
Einstein equations with sources satisfying a positive energy
condition, and that it is zero only for a vanishing gravitational
field, that is for the Minkowski métric itself. It has even been
conjectured that the A.M.M energy-momentum 4-vector is time like
and future directed; its length m 2 0 is called the mass of the
gravitational field; m = 0 implies that the space time is
Minkowski. The expressions for the components of A.D.M 4-momentum

are

« g0 .
P -.[S (aigij - ajgii) de {energy) (0-1)



L

P* = -2 I (GﬂjKii - Klj) de {(linear 3-meomentum) (0-2)
S

with 5 the Z-Sphere'at infinity of a space like slice, where the
metric has the asymptotic behaviour

<0 , 3 -4 (0-3)

228 - Mup
(naB = diag(-1,1,1,1) is the Minkowski metric, a«,B,... = 0,1,2,3,

i,§peve = 1,2,3)

Kij a --|g"‘m|'”2 ng is the extrimnsic curvature of the slice.

The positive mass conjecture (with our signature con-
vention) is that PlUA is positive for all solutions of Einstein
equations with sources which satisfy a positive energy condition,
and every time-like, past directed, vector U, at space-like
infinity.

The positive mass conjecture has been proved to be true
along the years in a number of special cases. The positivity has
been proved for all space times in a finite neighborhood of
Minkowski space time by methods of functional analysis by Choquet-
-Bruhat and Marsden 1976. The full positive mass theorem has been
proved by Schoen and Yau 1979, using minimal 2-surfaces imbeddéd
in the space like slice in a way which resembles the use of the
Raychaudhuri equation in the proof of the singularity theorems.

- A completely different proof has been given by E. Witten, using
spinors, a method which originates from supergravity.

We shall review the fundamental features of these two
proofs. To simplify the exposition we take fhe space time to

be diffeomorphic to ZR4, and the background metric to be the

standard Minkowski metric. The results can be extended to manifolds



with more complicated topologies (see the original papers or the

teview article Choquet-Bruhat 1983).

1. The Proof of Schoen and Yau

The basic theorem of Schoen and Yau (1979) about the
positive energy of asymptotically minkowskian space times is
purely geometrical: it says that an asymptotically euclidean

3-manifold with metric g of the type:

e (1 + %]4 §.. +h,. , h,. = or?) (1-1)

g5 ij ij ij

j
cannot have both R(g) 2 0 and m < 0, It thus applies to space-
-times which satisfy the weak energy condition and admit a maximal
slice (tr K = 0). They treat the general case of asymptotically
minkowskian space times in subsequent papers (1981 a, 1981 b).

The proof of the basic theorem relies on the consider-
ation of minimal (with respect to area) Z-.dimensional surfaces of
the 3.space (5,g). Indeed the existence of such a minimal surface

L ylelds by considering the second variation of the area 4 a

functional inequality
A"(E) 2 0 . (1-2)

The analogue of the inequality (1-2), for 1-dimensional submani-
folds which minimize (maximize in the case of a hyperbolic metric)
the arc length has been the source of many important global pro-
perties in riemannian geometry — and is the cornerstone of the
singularity theorems in General Relativity, when one uses for

realistic sources, the fundamental equation discovered by
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Raychaudhuri. Like the second variatién around a geodesic, the
second variation arcund -a minimal (or maximal) submanifold has a
remarkable simple expression in geometrical terms. However the
existence of these manifolds, with the relevant properties is
difficult to prove, and it is why the Schoen and Yau proof,
though conceptuwally simple, is technically very intricate.

| The second variation of the area of §,4"(E), is a
.quadratiC'form on functions of class C2 on 8 which reads for

functions with compact support

A"(E) (£,£) = - I £(a,f + £ Ricc(v,v) + £]b|D)dz =
s
- | (1-3)
- I'(]vf|2 - f2Riccv,v) + |b]?)as |
z

where the laplacian Ay, the norm | | and dr are taken in the
metric induced omn I by g, Riéc(u,v) is the Ricci tensor of g
contracted with the unit normal v te £, b is the extrinsic cur
vature of £ in (5,g). One has the identity (cf an analogous one
in the hamiltonian constraint), if tr b = 0 (verified since L

15 a minimal surface)

Ricc(v,v) - R = - + [b|% - R

where R, is the scalar (gaussian) curvature of I , thus (1-3)

implies
[ ®edibl?-rp £ as - awrce, s 0 (1-4)
z

Schoen and Yau prove that m 20 in (1-2) ab absurde (with some
more, reasonable, hypothesis on the smoothness of hij and the fall

off at infinity of its derivatives). They suppose that m < 0, and



they use this assumption to prove the existence of a complete
area minimizing surface I, which lies between two parallel
euclidean planes. They also use the hypothesis m < 0 to construct
a metric conformal to 85 j which has a strictly positive
riemannian scalar curvature outside of a compact set. Then they
use the formula (1-4) applied to this last metric, and the
Gauss-Bonnet theorem with boundary to arrive at a contradiction,
These proofs rely on dedicate estimates and deep results of

differential geometry in the large.

2. Witten's Proof(a}

We define as usual on a space time, 4-mﬁnif01d V with

hyperbolic metric Bqugr 2 4-spinor ¢ , and its covariant derivative

?l¢ = wa + axwp

where oy is the connection 1-form on spinors, namely
1 a b
Iy = T Uy pYaY

with wlsb the riemannian connection (a, b orthonormal frame

indices) and Y, » 8 =0,1,2,3, 3 set of standard Dirac matrices
Ya¥p * Yp¥g = 20, 1, Ngp = diag(~1,1,1,1)

70 antihefmitian and y' hermitian.

(8
( )This proof has been completed, and simplified by Parker and Taubes 1982,
* . Nester 1981, Reula 1982.



We denote by ¥ the cospinor (Dirac adjeint)

¥ o=y YU (¥ hermitian conjugaté]
We set |

b.c d

1 a_b.c : .
B = IT Mapeg Y Y Y ¥ (spiner-cospinor)
“We remark that, with our definition of ¥, $Ylw is real, time
lime and past directed.
It has been remarked very early in the development of
supergravity (Deser and Teitelboim 1977) that the commutator of

two supérsymmetry transformations is a Lie derivative of the

tetrad, and thus also of the metric, that is, if

’ Gawl = Vla (2-—1)

we have, if ¢ is an anticommuting spinor

A A . A= A
(5u26u1 - 6u1632J e, = ?85 R with E" = @, Y"e, (Z-Za)
(Gazéul - Guldaz) glu = Vkiu * vHEA = (LEg)lu _ (Z-Zb)

Thus, in some sense, the gravitational energy, "generator of
time translations at infinity", should be the square of super-
charge, generating supersymmetry transformation. In fact, in
quantum supergravity the hamiltonian H may be written, at least

formally -

Ha= (1/h) tr Q° (2-3)

where Q is the supercharge. It has also been suggested (Grisaru
1978) that it might be possible to obtain the positive energy

theorem in General Relati#ity by taking a classical limit, h + 0,
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of (2-3). These statements have not been proved, but it is possible -
to get inspiration from the formulas (2-2) to guess an expres:

for the 4-momentum of an asymptotically minkowskian space-time

—~ wWhich we shall check to coincide with the A.D.M definition. We
shall also show that this eipression is indeed the one used by

E. Witten in hig positivity proof. We proceed as follows (for
another derivation, in the hamiltonian formalism see Horowitz

and Strominger 1982, Deser 1982, or in the covariant formaliém

see Hull 1983).

Let o be a constant spinor in Minkowski space time, and
let ¢, be a spin 3/2 field in an asymptotically minkowskian space
time with metric 843" The charge Q(a) of the field ¢p, relative
to o and the space like slice I is up to a constant factor given
by the integial

Qo) = IS o £ ghuvp Y, 2, ¢p dxk

where
-1 L B_ Y
cl!:J,k = o7 EAGBT dx~ A dx” A dx

which can also be written as an integral at infinity

- = _ H e
Q(a) IZ o E(Yu¢p Yp¢u) dx" A dx

by the second supersymmetry variation (at ¥y = 0, we had 4, = Gawx)

we obtain:

= o - u P
ﬁuQ(a) Jz o E(Yuvpa vaua] dx" A dx
We see that 46aQ(u) is the integral over E of the real i-form

w defined on space time by



w=4%E Y, Vpu - VpE £ Yy0
«hich can also be written
1 pow o .
w = B dS (2-4)

with dS_ the 2-dimensional volume element corresponding to the

metric Bup

1 A, S M ‘/ !
4S54 = T Nggap 9% A dx * Toaru ® el oalu (2-5)
and E°* the real antisymmetric tensor:
B = 2 n°%% @ ¢ vy, Vgo - VA E V), (2-6)

w is the Witten's 2-form.

We now give the. relation between the Witten 2-form and
A.D.M 4-momentum. Since the mathematics in Witten's proof are
fairly straightforward, we give precise definitions under which
it works.

We define a Hilbert space # of fields of 4-spinors over
I (diffeomorphic to m'3) as the closure of the vector space of
‘such fields which are infinitely differentiable and with compact

support, in the norm

. 172

|“ﬂg -1 Ims{d-z(au) + Gij a; o aj u}dsx}
(we -denote by 9;o the partial derivative, and set ¢ = (ls+r )1/2

If the metric 8ug is twice continuously differentiable and

satisfies on L the asymptotic conditions

: -1 -2 ' -3
Byg = Mgpg " o0(r ") , a8, Bug = 0(r™) sy 9 auBag = 0(r™ ") .
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We have the theoren:

Theorem: If on L.we have
[lwlpod-lp.l

with ¥, smooth and constant on I and ¥; € &, then

A . L= :

Proof: we have, w = wy + w, with on I (xq =0} .

wg = 4 @oEv; 5wy = V;TgEv;¥p) dxi a4 (2-9)

_ i, .3
wy o= T8V V50 - iBiEv vy » FiEy;950 - Viakyvg)dx ‘: d"z .
2-10)

We prove first that
( wy =0 . (2-11)
5

Indeed, by definition (Krl sequence of increasing compact sets

covering L )

J wy = lim ('x wy = limI du, -'I du, (2-12)
z Nuw 3 = K . S

we have, on S

dwy = 8 Re {?R$O£Yi?j‘p'l + EUEYivkvjwl
{(2-13)
+ ?£$1£Ti7ju_$ $1EYinvju} ax® A ax* A dxj .
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The second covariant derivatives, antisymmetrized, are replaced
by the Riemann tensor. An inspection of the various terms added
in (2-13) shows that they are all integrable on S, and that,
given Eo, their integral on S depends continuously on the ¥ norm

of $q- We can therefore obtain J dm1 as the limit of integrals

8
of exact differentials of forms with compact support (by appro-
ximating L2 in # by spiners with compact support); such integrals
are zero on I, and the same is true of their limit.

Second, we prove that ;

X
I,;"’“ -p 0t (2-14)
where UA is the time like or null vector in the lorentziin frame
at infinity given by
X .
U" = on 'po (2'15)

while P* is the A.D.M 4-momentum.
Indeed, by hypothesis Yy is constant on £, that is

3;¥p = 0. Thus,
wp = - %(EYiYaYb + YsTbETi)lPomjab dx® A dx?

which gives the formula (2-14) by using the multiplication pro-
perties of Dirac matrices, and the value of the connection in the

orthonormal frame (¢f Choquet-Bruhat and DeWitt-Morette 1982 p.308)

V] 1 _al far -2 -3
a 8 =7 n (hAB+fAB] wltp le = 0(r™ ") R auflﬂ -« 0(r 7).



Proof of Positivity

From the Stokes theorem and the expression QF W we

deduce

; . Ja 1 B A [}
fsw.fzdm.hv“}s 4T, , 4Dy = gy nogy, &xF A axP A dx

(2-16)

‘with (due to the antisymmetry in a, B this expression is real)
ap cpéﬂ - -
VpE 8 n (Vpuiyavsu + uETSVpVBq)
we transform the first term by the Dirac algebra property

naaﬁﬁ 1

tvg = 7 0 4 °BY)

and the second by the Ricci identity on spipors (of Lichnerowicz

1964)
1 Ap C re ama
Vo ¥g0 - ?BVuu = - 7Ry Ty (2-17)
we use also _
g . o0 1 .0 = 1 oadp ) e
S FRG -z 8RR g0k,
and we obtain
vaEuu N -4V&E(7°Y°B . TGBYGJ?BG . 25013#13
(2-18)
Einstein's equations, Sax-'l‘oA can be used to write the second
term as
o A
2T AU

A

We know that Takncu is non negative if n is time like and the



sources satisfy the dominant encrgy condition. We shall now
study the contribution of the first term in the integral (2-17);

when S is the space like manifold x¥ = 0. It reduces then to

(one has 70701 + YGiYU_a aj.
ag = B 15 15 0 - 1ij :
Zviu(y Y iey Ty )vja = 4Viu7 vju
(2-19)
PES Mg v i
= 4g ?ia?ja + 4?iq7 ¥ a

We have proved the identity (valid if SOA is integrable on S)

utp, - I w=| 2gtv.av.a + ¢ avte + 2vdyivivie) dr . (2-20)
. S i%j A j

X

We deduce from (2-20) that U Pl 2 0 if o satisfies the Witten's

equation

pa = yiv.a =0 . (2-21)

It can be proved, using a general thecrem of Choquet-Bruhat and
Christodoulou 1981, that this cquation has a solution o, with
a = w0+¢1, ¥y constant ¥, € & , under the hypothesis made on
Bope

The identity (2-20) gives, when a satisfies (2-21) and

SAu = TAu' the manifestly positive expression for PAUA

A 2 .0 _ A )
PU" =2 IE {|va]® + T AR ) az (2-22)
Note that the integrand in (2-22) does not give a
positive density of local energy for the gravitational field since

a, solution of (2-21), is a non local functional of the initial

data (¢ W
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The equality (2-22) shows that P* = 0 if and only if
the space time is empty (T:\u = 0} and V;a = 0 for every
& = Yg+y, solution of (2-21). From the Ricci identity, and the
possibility of deformation of S, one deduces that the Riemann
tensor of Bap vanishes — thus the space time is flat. It has
also been demonstrated (Ashtekar and Horowitz 1382, Taub 1983),
that P* cannot be a null vector {i.e. m = 0 implies flatness of
space time, as conjectured),

Interesting recent developments extend the previous
Tresults to space time containing black-holes, or background
geometries other than Minkowski, for instance de Sitter and anti

de Sitter space times.
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