INTRODUCTION TO SUPERSYMMETRY AND SUPERGRAVITATION

PREM P.SRIVASTAVA ,
CNPa ~ CeNTRO BrasiLEIRO DE PEsaulsAs Fisicas

1 - NOTATION - SPINOR SPACE REPRESENTATION OF LORENTZ GROUP

The Lie algebra of the generators uin of homogeneous Lorentz Group (HLG), (& = 0,1,2,3} is
given by

(M Mpgd = 1 (ypMup MM uq* "mgnp~"2.qMmp
where Mlm L Mml and Nym = diag(~1,1,1,1) is the metric.

A realization of this algebra is obtained in terms of the elements YO.YI,YZ.YS of Clifford
algebra over Minskowski space; they satisfy

{YE.Ym}+ = 2 pm
In fact

Mym = ~ 1 Y%y

where
1 - _1
Oum T 7 EYl'*m—l- T (g = YY)

The representation of yz by 4 x 4 matrices is an irreducible representation of the Clifford
slgebra. Thus we obtain a representation of H.L.G. by 4 x 4 complex matrices 5(0)

1 - & _m-
1 1
S(A) = e® -y Y . det S(A) = 1

- - £ i 3 P L .m -
where lzm (Akm nlm] and A"m is Lorentz transformation matrix: nlmﬁp A aq npq.

The corresponding representation space is 4-dimensional complex space called Dirac Spinor
Space. S{A) acts on 4-Spinors ¥(x) which transform as:

Y =

vy —A sy v

We note also the identity:

¥ At s Yt st

showing that T£ are "invariant” matrices and index & is a 4-vector index w.r.t H.L.G.

transformations. A convenient representation for v* is the Weyl representation defined by:
0 ot
=i
-o* o

where in terms of Pauli matrices s
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_ -+ B L _ 12 = &m
U!. - (Iic) 3 a [ IsU] n Gl'll
Explicitly
0 0 I y o of
¥y = -1 ' Y =1 k
1 0 -g 0
and

ootz (Y0,
Ys YYYYy 0 I YGYszYs

The charge conjugation matrix C is taken te the

a 0]
C= - YDTZ - l Z ] - cT
0 -0, .
We note
0 u+ 5} 0
POy e YOYeY = evg

In Weyl representation S(A} takes the form:

Sl{ﬂ) 0
S(A) = -1
0 Sl(ﬁ]

=1

where Sl, SI are 2 x 2 matrices:

-+

Sl(A) = axp [% . 3 - % 7 . E]

SI_l(A) = exp [% .4+ % 5.5

- . .
Here a, % are real and parametrize the Lorentz transformation.

Thus the representation is reducible and §;(A) and SI-l(A) are Z-dimensional inequivalent re
presentations of SL(2,C) = S0(3,1), HLG group., They give rise to the representations

D(% , 0) with generators {- % o, - % 3}
and

{0 , %} with generators {- % 5, o+ % 3 .

=1T * +=1 . -
We note that S1 - S1 and S1 - Sl ,(-: equivalent) since
=1T
5y =95 9

v 1T
§) =0y 8 9,

We write in the Weyl representation ¥ s'[D[%.OJ D (0.%)] as

(xa] X = 1,2
¥ = = .
(?é) ¥ & = 1,2
so that under HLG we have the transformations x' = 5;x er X& = Slaﬁxs if S1 H (Slua) and

§r o= (SI-l)T which implies §& . (SI'l)éd g B,
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From y' = S5;x = o S;lT czx we find (uzx‘)T = (sz) SIl. This leads to the invariant (ozx'}T
n' = {uzx)Tn if o = 8yn. It is suggested then to define x*

(%) = dg,(x,)

or ) 0 3
x“ - EGBXB where (uaaj B iaz =1 o .
Similarly
E1a T =T .+
(02? )t = (oz?] S1

and we define
&
(?&) - 'iuzcw )
#

or o -1
?a - egs ¥ where (E&QJ = ~ig, =
1 0
We verify that

a SII o XB

e“é are defined as inverses, viz,
9B _ 4B . 9B .

[> Ga and ess € Gg
Thus

[eaa) - (e&é) = —iuz
and .
(c®®) « (9 . +io,

Clearly, x“na ., . E& are Lorentz invariant. We write

¢ ] a
XN = XMy = =XgN

¥ = §.20 - 9%,

i+
We show easily that €ap? s“s, Esd s“é and 62 are Lorentz invariant tensors. Now
B
(8,,M1 o
Rl i
0 ®eN)
CRMT
_1 r
S T{A) = |=ummmmm f----g-
H -
: G
Eo+
- ' 0 Sla S1
Sy°8 " =1

From vl = alp s(a)y" S'l(ﬁ) in order to match the indices in Z~-component notation we must
write:
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ot = oty - - L)

G N )

Clearly, dlug- %98 are invariant under Lorentz transformation as is cbvious from their de-
finitions
0 Gy 0 ot
] .
¥yoo= i . = i
(5*98) 0 o, 0
From ¥* = suB?B. ?a - EquB and similar relations for dotted indices we also derive

Lué) - Eévuiui . '°£a% (iuz)Yé - -(ioloz)aé

(51&5) = -(ioloz)a‘B
Also

G¥e . m g¥ o (Hermiticity)
and

Tap T (0Tap) = -959,9;

The completeness relation is given by

AL PR AL

We may then express any 4-vector v} in terms of 2-component notation:
V“& = vh 9,44 (Penrose)}
vi . - % E&G Vs

If Vi are real, then Va& is a Hermitian matrix. For

“as % 8l Flm " Fap F&é * Fak FaB
where FuB' F&ﬁ are symmetric and if Fzm is real, they are complex conjugate of sach other,
For Dirac adjoint we obtain
., -
LAY L D IR GO0 o

] I
e T (-i)(i&.w“)[l D} - -10%,5)

let
X £
¥ -, and 6= .
¥ n®
then the bilinears are expressed as:
t

¥4 = -1 (¥E + ¥n)
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¥ (-iyg)e = -i(¥& - X0) etc. .

In Weyl representation we note

X
% (1 - iyg)¥ = [ ;] .

and the Majorana spinor takes the form

[+
Xg 7 X -
Yy = : ¥, = -1
M -4 M _
X X4
so that
i a B
igy (x7) EypX X
ch cqr"T= = = = ¥
M M . &é- - M
+io,(xg) £77xy X
. . . . : . 0.2 0 2+ 0 L
The Charge Conjugation matrix C in a representation satisfying (v )" = -I,.vy'v v =¥
satisfies
cly® oo (2T
¢l - ¢
\ . C : C_ 3T 0T o * . .
The charge conjugate spinor ¥~ is defined to be ¥~ = C¥ = Cy ~ ¥ . If ¥ satisfies Dirac
equation for a particle of charge e then vC satisfies the Dirac equation for a particle
with charge {-e)}. In Weyl representation C = =~ YUYZ.
We remark that we may obtain the so called Majorana representation for y-matrices by a
unitary transformation of the matrices in Weyl representation:
L ] +
Maj v Yieyl u
| . L2
u (I +1 TWeyl}
The representation has the convenient properties:
|3 R+ LT
YMYMYM T M T M
- - 0T
Cm ™
so that charge conjugate coincides with complex conjugation.
A Majorana Spinor ¥, is defined {in any representation) te be & Dirac spinor satisfying
the Majorana condition: Tﬁ = ¥y leading te ?M = -4l ¢l m Weyl representation it is

essentially defined by a Z—Spinorxuand thus has four real components.

We will assume that the spinor components anticommute, viz, ?G¢B - -¢B¥c. The Complex Con-
jugation operation is defined such that the order of anti-commuting factors is reversed.Thus

Foa" -ep (005, v, =5 vP 0" 40y

where we used (Yo)z = -1 and Y0+ [ YO.
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For Majorana spinors we may derive the following symmetry relation

Eon=d@lon’s

Thus we c¢btain:
Fe) = (39) = - (Fo)
') = - Y = - (e
(Frgo) = (Brg®) = - (Brge)
(?YSY£¢) - ($Y57£Y) = (?YSY£¢)*
(Fa*Pg) « - (F*My) = (B T9)”

In Z~component notation, for example,

B g

m, & _ _ g, chBa -
Tag X T TR T X 7 T

=l

al

=]
Fad

my . G M o
Xo ¥ =y L] ¥
and

—mBa. * mee

™))" = - @ v, = v 0 "

Xg=¥o Xx=-x4d

It follows that for Majorana spinor £, £ yl E=Eo E = 0, and only axial vector,
and pseudoscalar survive.

The parity and time-inversion operations can also be realized on four spinors:
¥'(x') = S(A) ¥(x)

where we require that S(A) corresponding to these discrete operations satisfies

L

v e at sy vt st

(1
as well as the relations corresponding to the equations

-1 = —l -
Ag  Ag Ag = ALT Ap AL = Ap .

-1 L -1 L ,-1
Agh Ap Ag = AT A AL = Ay

Here AS' At are space teflection and time inversion matrices and “R'hh correspond to
rotations and pure Lorentz transformation. For example, for space raflection

¥ (- K% = 10 ¥? v %)

where n is intrinsic parity, n = t1, *i. It fellows that T'c(xo,-;)=-in‘yofc(xo,§).
Majorana spinor we must have n = = i.

Finally, we mention the Fierz rearrangement theorem, If

I, = (M0, (AN

scalar

space

For

where M, N are operators and ¥,A,x are anticommuting Majorana spinors then we may rewrite

Ia--%i(XOAT)(MOANx)“

where

o* = 11, ¥4, o, stz. Y5}
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i . - A B AR
A=1 ... 16, is the complete set satisfying Tr (0°0 ) = 4 &,

2 - SUPERSYMMETRY
2.1 - gI0BAL SYPERSYMMETRY

Supersymmetry is the symmetry between bosonic and fermionic variables. In the contex of La-
grangian field theory models it is the symmetry between bosonic and fermiomic fields. Con-
sider a model with one scalar field A(X) and a Majorana spinor field y described by the
action

4 a1 ) i = -
S= /L d% = jdx | -y BN - FXY -2 X
The action is invariant under global s.s transformations:
SA=iey=(eQ) A
x = (BA) ez (sQ x

where ¢ is a constant Majorana spinor, § = 7132 and Q are (Majorana spinor) generators of
supersymmetiry transformations.

We remark that dimension L = [L7] = 4, It follows from the form of (kinetic terms) Lagrahgian
that [A7} = 1, (x| = 3/2. Thus there is dimensional gap between hosonic field A and fermionic
field which is filled in by e with [¢]] = - % in the bose-fermi transformation &A. The
transformation &y then must involve a derivative as follows by dimensional arguments.
Consider now the commutators:

- - .- 2 - - =

L8Ceyd, 8Ced A= 21 B, v7 g,(2,4) = [[E,Q, €.Q] A
The fermionic charges Q anticommute with constant parameters €y, £, and we easily derive

(Qyr Qgt A= 21 (¥'0) g 3, A= - 20v%0) P,

where P! = i az is the translation operator. The s.s charges close into space~time trans-

lations through an anticommutator. In other words if we are to have a closure of the
algebra involving generators of s.s transformations, translations must also be included 1in
the algebra. When the global s.s is lifted to a local s.s e.g. € = e(x), we will involve

translations over "distance" EEI[x) 71 szfx):| which depends on the coordinate x. In a sense
we may expect in the case of local s.s. the appearence of general coordinate transformatioms.

In the case under consideration we do not obtain the closure for the y commutator
[8Ce), s(ep] x £ 2i () vhe,) 2, x
even when we use equations of motlon (on-shell}.

2,2 - QN-SHELL WESS-ZUMRINQ MODEL

In this model the algebra of gemerators cleses on shell. The model uses two spin zero flelds
and one spin 1/2 Majorana field. The Lagrangian

Le-2 0,0 -70,0%-3%7x

is invariant under global (rigid) s.s. transformations:

(1]

GA ~ i X
6B = i Yg X% .
sx = 3 (A+ By«

.
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In fact

L= -3,
kb =2t s Ay x
The equations of motion are
Oa=0OB=2%x=19
and
[60c,), 8Cep)]] (Pield) 2 2i (3, v% ¢,) 3, (Field)

Here # indicates that we have used equations of motion to obtain the equality. Thus the su
per-multiplet (A,B,x)furnishes a representation on-shell of the s.s. algebra "

- L
{Qu‘ QS} Z (v C]aﬁ PL
[P, Q=0
From the definition of Q as a Dirac spinor we alse have
Equ’ M&m-l= i (°xm)ae Qe
The algebra generated by Qu+ Pgr My is supersymmetric extension of Poincaré algebra. It has

"odd" elements Q, and "even' elements P, M, . It is a superalgebra with Z, grading such
that

14

(i) The bracket of two generators is always antisymmetric except for twe "odd" elements when
it is symmetric.

i) The "odd" generators form a representation of the ordinary Lie algebra spanned by the
“even'" elements.

i) The Jacobi identities are medified due to grading.

2.3 - MHEW&HEEB:@JM&E'L&&EBM: SPE
(Sohnius, Haag and Lopuszanski, Nucl.Phys., B88, 61 (1975)).

In 4-dimensions the most general supersymmetry algebra, consistent with Poincarg invariance
and certain requirements of the properties of S-matrix coming from a relativistic quantum

field theory has the folleowing structure:

L ]
{Q,. Q! - (v"C)uB P, 89 + Coq Ut 4 (v 0, V)
ij 1'= - ij Ai'- . ij 4itj? - ij i'jr- - ij yi'i'~ .
v, J=Cvi.q J=[u v 3=l o 2 =[v/, v 7 =0

[Qs. Myl = & (9505 ¢

(*) N.B,: Under space translations sx* = 51 a field ¢${x) transforms as &¢(x) = - z‘al¢(x].etc.
Writing P, = - 132 as the generator of space translations sx* - i(E-P) xz,
§6(x) = -i(E+P)¢(x). If then follows, for example, [[&(c),5(E) JA(x)=-i[ £-P,EQJA(xX) = 0
leading to [PE,QGJ = 0.
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-1 S
{al.p,0-0

Dgme Mg = & (Mg = wen ¢ e = o)
EMnm’Pn—l' i (g Bp = Mpn Pp)

[P, By=10

vt) anc.l.‘.-’lzI where i,j = 1 ... N are internzl symmetry indices are present only for N > 1.
Also UX) - - It w1 o= - I are Py invariant operators. U, ¥V belong to the centre of spl

4
and called "Central Charges". They have important censequences on the structure of the
representations acting on one particle states. Central Charges have dim = + 1; they occur
only in field theories where there is a dimensicnal parameter, say,

(a) a mass parameter in L.
{(b) the energy scale introduced via Spontaneous breakdown of internal symmetry.
In the absence of central charges the SP? algebra has a U(N) symmetry. This symmetry is

relativistic: [U(N) P, | = 0.

The N-charges Qi are Majorana spinors

We note that

(Qy, Q) = (v'C) g Py = (PC)yy
implies

Q. Qg = - (Mg Py = - (Mg
where

g=q ¥’ ama QL -cipQ amd (R Q= - BB

Thus Q, in a sense are “"square roots™ of Dirac (operator) equation. On tracing with Yniibus
the important relation: )

4
1
H= - Py =gk (QQ * Q4 Q)
This holds even in the presence of central charges.

The global or rigid s.s is the square of translation operator and ome expects that local s.s
should be the square root of general relativity. This result is essentially the cuterme of
different dimensions of boson and fermicn fields. For local s.s case one expects

[oey(x), 8e, (0] B v [E,00 vhe (x)] 2, B+ ...
One would thus be led to translations over distance Ez(x) 11 eltx} which differ from point

to peint. This is the idea of general coordinate transformations. Thus local s.s should lead
to gravity. This is, however, only a heuristic argument.
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2.4 - QFE-SHELL WESS-ZUMIND MODEL}(SPy ') Auxiliary Fields

We would like to have off-shell closure of s.s aipebra. It was slowly realized that in a
5.5 field theory we should have equal numbers of hosonic and fermicnic components. In  onm-
shell model discussed in 2,2 we have

A, B 2z bosonic

iu. Kyr & = 1,2 4 fermionic

We need te add 2 hosonic fields F, G. Consider

L 2

o] =

1 -
xin = -2 G -7 (0B)= - FiAx ¢ F 5 G
which is invariant under rigid s.s transformations
A = ify

8B = ifygx

8y = {F + YSG + (A + B YS]} 3

§F = ifpy
§G = iZy Fx
We may add alsc invariant Lmass and Lint terms:
i -
Lmass =m (FA + GB - 7 X%
L., =gl FA% - B + 26 AB- 1% (A-Bv) x)
int © & X Y5t X

The "auxiliary fields" F and G aliow us to close the algebra without using equations ef mo-
tion (off-shell):

[6,. 6,00 % = 2iE v ) 3, x

The #x term is now cancelled due te the contributions from F, G fields. The super-multiplet

(A, B,x, F, G) called scalar or chiral multiplet realizes the s.s (global) algebra off-shell.
1

The fields A, B, x give rise to a representation on single particle states of s.s algebra

(see latter) - the lowest spin representation of s.s with N = 1.

The auxiliary fields F, G satisfy purely algebraic equations of motion. They are  important
to keep the s.s transformation.laws linear and allow off-shell closure of the algebra. This
in turn allows us to build a tensor calculus. Quantum rules and super-Feynman tules can
be build (using superfield formulation).

Rigid {or global) s.s invariance implies conserved noether curreat:

Jg =3 (A-Byg) vy, x- (F+rGvyg)yyx

0
o

. _ 3
0 H Q, = fd" xJ
The field equations for auxiliary fields are

2

F+mA+ g(A? - B%) =0

G+ mB + 2g AB = 0
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Eliminating F, G we obtain the Lagrangian

A N LIEE NCH L S LS

- % X (F+m) x-gmaA (Az + sz

Z
2 P -
-5{(»\ +Bz)2-1gx(A-Bv5)x
which is supersymmetric extension of ¢3, ¢4 or Yukawa theory.

The reulting s.s of the Lagrangian not only implies the equality of masses for A, B and ¥
but also a precise relationship between the interaction terms and is responsible for high
degree of renormalizability.

We note in passing that the multiplet (A,x) initially censidered has nothing to do with s.s
it is not a representation of s.5 on or off-shell., In fact, not even the on-shell states
have the equal number of bose and fermi degrees of freedom required te form an irreducible
representation of supersymmetry.

2|5 - Ell%] _GLQBAL SIS MuLIIELEI: ngv)
Another example of a s,s5 multiplet is given by
2

N |
L T [32 Vm

2 1 1
=3, V) -z XF X 3D
is inmvariant under global s.s5 transformations

svl = - B ¥y A

- &m
6i = F,o ©

1 B+i~(5De:
8D = i € yg 3 2

Then
(6,08, 020 =28, v* ¢, 3.2

But if we eliminate D first by using field equations for it and insert in L {eq. D = 0) one
finds

- - 1 = -
E51' 62_| -ile, YE €] 3, A+ 3 (€, 71 £5) Yy F P (g, @ m £,) Tm 3

For boson fields, even in absence of auxiliary fields the algebra closes due to dimensional
considerations.

3 - REALIZATION QF S.$.  ALGEBRA ON CQORDINATE SUPERSPACE

3.1 - METHOD OF INDUCED REPRESENTATION

Consider first the realization of Pincaré Group P on Minskowski space, P is defined by
P={(ag.A}|(a’,A")(a,8) = (a' + A'a, 4°1))

where
a, : four-vector of translations

A= (Alm] : Lorentz rotations, AT na=n

and 2, A'n are real. P has subgroups
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Ty = {(a,I)|(a',I¥{a,I) = (a' + a,I)}

L= {(0,A)]{0,A")(0,8) = (0,47A)}

T, < P , LCP

Since (a,A} = (a,I}(0,A) the coset decompesition w.r.t L € P (L is closed) is P/L~ {(a,I)L}.
The coset space P/L may be used for a realization of the group P as a transformation group.

Consider an element of P/L, say, {XE' IJL. Let {(a,A) ¢ P be any arbitrary element, then,

(a,8Y{x, 1) L = (a + Ax,A) L
= (& + Ax,1)(0.A) L
= (a+ Ax,I) L

Thus

o, DL L84 ey L: LD L

e.g., any {a,A) € P induces a transformation on the coset space P/L parametrized by {x,I)

LIS N

m ™"

Thus we have a realization of P on the coset space parameters. We loosely write P/L = {xz}.
The whole Poincaré group is realized on the space of 4 coordinates Xg» Even though F itself
is characterized by 10 essential parameters [az, At m).

Consider now the Super-Poincaré group SPE;':1
1

~i(EQ+E.P+ = A.M)
-4 Q 7

. A general element of SP4 may be written as

where
51 : translations

€q * Supersymmetry transformations

kzm: Lorentz rotations,
Alse L C SP, is a closed subgroup. The coset space SP4/L consists of the elements of the form

o1 (BQHX.PY

as is clear from
1
A+B+ »{A,B)+...
e? P u e z
and the commutation relations of Q,P,M. Considering left multiplication on a fixed

element of coset space we obtain a realization of s.5 transformation on (xl,em) coordinates
oT parameters.

~-i(EQ+E.P+ % a.m)  -i(BQ+x.P)
g x".8') = e e L

Set A = 0 for convenience, A = -i{eQ+£.P), B = -i(BQ+x,P) we find
[A3]= (& v* o) P, \ [TA.B],B] = 0 .

- = - 1 -1
-1 (e + 8) + {E + X).P7| + ey B8P
31,("" B') - e I— Q -I ] "L

Thus, the induced representation on superspace coordinates is given by
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x; = X, * By v g (E vy ©)
{Salam and Strathedee)

&2 &
We note:
L - L =
GP X, Ex , 5? BCl 0
L I L _ Lz _=
GQ Xz 7€ Yy [:] . 6Q Bu £y \ GQ au €,

- -* — -
We remind [i € v, 8] = 1€ vy, 6 is real though nilpotent, (€ g B)S = 0. We loosely

%? = {xs,eu}. Next set
e=E=1D . A # 0:
Using
oh oB o BAB+... A
we derive
G rP) e (xP) ¢ 3, (o PM - X Ph
% = ga - % *im (@ czm]u

g0 that for infinitesimal transformations

L m

8y x* = - b x

L s _ 1 = _&m
Sy 9 = " T rm 9 ¢ Ja
L = 1 m

by 95 = * 3 Aym (o a)a

We may have as well used right multiplication on the right cosets
- = L= 1
gR(xu‘en) = I e'l(aQ"' %xP) e'l(EQ"‘E.P"‘ ¥ L.M)
We get
xy =x, *+ E, - Lz Y, 8
| 3 2 |3 Zz 2

By = B+ &

[+ [= ]
x" . P=x . P- % Aom " - X" pt)
85 = By % Am B ™My
which lead to
53 6, = 63 8, 53 x, = - 53 X,
sRo -spo,-0, sRe = -0,

‘write

Thus s.s. transformations (rigid) may be realized as transfermation group over the superspace

coordinates (xl,aa); the 8 coordinates spanning a superspace (Salam and Strathdee)

Ex"‘xm:t - Ex"ieu] =0 - {BQ’BB} =0
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e.g. (8,)° = 0., & are called Grassmann coordinates.
1 o

The s.s group of Wess and Zumine may be thought of as arising from an extended space-time.

B; we remind are Majorana spinors and transform like Dirac spinor under Lorentz transforma-
tions.

3.2 ~ GENERATORS [N COORDINATE REPRESENTATION

We may now obtain a representation of generators acting on superspace coordinates. We have

sk x* - Baxtagh e 2tz pht -1 s PRy ¥
ax
%0 that
L=R-_'
phoe PR -t s,

Also
sp(E) 6, = 1(E.P) 8, = Sp(E) 8, = 0
for Lorentz transformations:
Gh(l) (xl.ﬁu) = (- Ai x", % (x.00) )
From commutation relations (M,P} and these variations we find:

Mzm - (xnpm _ mex) - i(clmﬁ) 9

o 38&.
if
s Py =1 xte
M et T 7 : Ya
For the case of s.s transformations
L & _i=_%, _ m £
GQ x T E Y 9 £ (v 8) 7 X
L, -. . 9 Loz 2 P
6Q ﬂu = Ea EB -a—e; Ba EUCOB ﬁ‘ég Gu N GT SGT
8 = 8C
= -BC

sgxtiey) = Eqr | “Carp 75, * 7 oM, ;fﬁ_|(x‘.eu} = iE.qhxt,e,)

where
L 3 3 m . 3 1 m 3
=1id + 5 Uy 3] =liCag + 3 (v 8) —5
%4 af EEB M L 982 B o
We may check [Q, Moo if{u, ) Q.. From s} (x%,0 )= st(-x*,e ) it follows:
- tm‘af™ g’ Q o Q a '
R i 8
Q- [1(1 (") ——
a K18 2 axm a

We may derive a commutation relation between QL and QR as follows:

HORHORSERICNCE ERGUIEEE SO
sgle) sgm) x* = 8h(e) GA vty =g A st e - TEvtn

L R R L
Gq{n) GQ(e) B, = GQ(sl GQ(n) By = 0
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Thus we may write

Gé(n) Gg(e) - Gg(s) 55(”3

or

G.eE.dd=¢.d .

- = L .R - R L - = L
- Ny €g U Qg €8 Qg Ny Q = Ny eg Qg Q
We cbtain
L R _
[QG' QB}“‘ - 0
We verify directly )
L nLy _ _ L _ 2
{QpQg} = - 1 (YlO) 4 0, = (vhO) By
and it follows by inspection
R AR £
{Qu'Qs} - {y"C) P,
3.3 - scALAR SUPERFIELD »(x,6)
Over superspace may be defined by
¢' (x'.8'") = ¢(x,8}
Then for infinitesimal transformations
= oA L LB I
§¢(x,83 = ¢' (x.,8) - ¢(x.8) = - | &x 7 v 88, wa— | d{x.8) + ...
3% a -

Note that we always use left or ordinary derivative and 68 must be kept on the left of

Alsa 5x£ = GLxl, Gea H sLea, etc.

- gh 3, ¢ -i(E.P) 8(x,0)

It

SplE} #(x,8)

6(2) 6(x,8) = « 5 (M) o(x,0)

Sk ACR UL RTINS

n

5(e) ¢(x,0)

Using

] ]
€ = - e, Cp =
a 553 B “Ba aeu
we may rewrite the last expression as

sle) ¢ = &, LCGB

Thus

iz 3 - -
- (y9) —5 1¢=-1i(s Q) ¢
Z o 3x£ _]

ad|
Qr
ke

8600 -i [ () + 7 O.M) + E Q| 6(x.0)
corresponding to

(Ille }

L e
$(x7.8,) =+i a

£.p o+ 3 MM e iq

T



- 265 -
= ok = mb
Here Qu 2, - Mon = Mo

Since 8, are anticommuting parameters we may expand #(X,8) in terms of Ba obtaining a finite
series expansion:

$0x,0) = A(x) + BY(x) *+ 7 (B8 Fx) + 8 v, 06+ 5 v,v;8 A¥(x) + B0Bx(x) | + 35 (88)% D(x)
Here A(x), ¢(x), F(x). Ai(x), x{(x}, G{x), D{x) are the component fields of the scalar super-
field ¢(x,8). We remind 3 YL 8 =0 and § %m @ = 0. Superfields are very useful in writing
Lagrangians and introducing interactions just as we do in ordipnary field theory,

The transformations of component fields may be worked out straightforwardly by comparing the
cocfficients of &'s on‘the two sides. Superfields are a necessity to work out superfield pro-

pagators and a systematic quantization of the theory.

it is easy to pass over to Z-component formulation:

Qy :
Q“/(Qm)= . a=1, 2 @ =1, 2
ad
1,2,3,4 \Q
9
o
§ = . Majorana Spinors
gﬂ.

- i(EQ = -(e" g, + ey QY

From
0 I
Y0 =i , § = ety .
I 0
y Rk
crz [4] 2 0 (uaé]
c = : y* =i .
0 —02 (aluﬂ} o
“Cap 0
iC =
0 E&ﬁ
we easily derive
- 3 i & xBy 3
QG = - cp 35, 7 %35 7
3 1 i -tc ?
Qu = eaé ":E . % G af GB} ;;I
EL]
Here o,8 = 1,2 , a,B = 1,2 is clear from the context. Care has to be taken in ralsing and
lowering indices:
- B .- 2
xa EGB x but -a';a— t'uB aeB etc,

Thus

i

3 t =f
Qu";-ai-"? Uaéﬁ 3".
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3,3 - COVARJANT DERIVATIVES (SALAM AND STRATHDEE)

Spinmor covariant derivative D must be defined since a/aeu is not covariant under 5.5
formations. It is by definition such that ¢(x,8) and (nB)¢(x,8) transform under s.s
formations in like fashiom, viz,

5Q¢ = -1 (e@ ¢ : e,n constants.

8 CoDe(x,8)] = - i (eQ)(nDI${mH)

But
6Q1:(ﬁ0)¢:iz ADe ' (x.8) - (AD)$(x.8) = (AD)S4(x.8) = -i (ADI{(eQ¢{x.0)

Thus i
[£Q,hD] = ©

or
{Q,.Dg}, = 0

We may thus identify D, with QE above, (Qa S QE).

For the covariant derivative cerresponding to 3/3x> we note:
6P¢ ==1id(g . P) ¢

we require

- R . £ -
g.P,e D, 1=0 or [ U
Clearly, DE = Pl since (Pl’ Pm) = 0, The spinor covariant derivative
- R o ip 3 _ 1 L 3
Dy = Qy = iCag - 7 ('O 7¢

differs by a sign in the second term compared to Qu. In 2Z-component notation

- 8 _ ik B 3
D, €aB 38 7 %af © T
B R
D& - E&B 3 i EE&B 6 3
Zz B
aﬁé axl

Covariant derivatives are necessary to impose covariant constraints on super-fields.
Wess-Zumino model is obtained by imposing on the scalar superfield the constraints
Da¢ = D&¢ = 0.

It is clear that

{D_,, D

o B}

1
- (Ve By

L
D,. BB} =+ (v )yg Py

[Py, Dy l=0

We may pass to Z-component notation:

trans-
trans-

Thus
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{Qa'QB} = Uié Py

1q,.9 = @, & - o
It follows
{Qa' Qé} - Gié Pk = Uga P£

In the presence of central charges we have

{q,, Q) agé p, &%

1k, Qg] = eqq -V 4 a0ld) - eyp 21

wl, Qg} eqp (V17 + 1uldy

For the covariant derivatives

opdir oo _ L2 ij
[Da‘ Dé} = - 9. P, &

i j = - _i j
{o,, DB} 0 {Da, DB}

Covariant derivatives do not anti-commute like Grassmann variables:

{s ) e%} = {6, ég} -0

Qe

ai

[Xz‘ xm:|= 0 ' Exg' eai:i= [Xga é&i] =0
We remark that

S D - (vhe)
Qu - Du v e)a [}

8x
R - & 3
6g(e) ¢x.0) = -i a0 - E vt o) B Jew.0)
Q axt
Also
ED = -~ i(eD + gb)
2
° i (%
= YL 6 = —1(Ea.E&) « 1 . ) =G
almB 0 B
..o & B - _za8
=€ dgp §° + €3 Bg
- s —R&B -,
e g” 8 GB o €4
£ B 4, -a
=e0 8 -8 oge ¢
= (g ot 5.0t €)
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in 2Z-component notation. Thus for ¢ = ¢(x,8,8)

Sgfede = - [ D + D + 100t - ¢ o* §) J $(x.8,5)
Because of anti-commutation relations of D, any product of D can be reduced to a linear com-
bination of 16 independent operators:

2

I, Dy, BD, B yg D, By v, D, bop, . (DD)
Since Q,'s are linear differential operators we may show that
(i) linear combination of superfields is again a superfield.
Gi) product of superfields is again a superfield. -
Superfields form a highly reducible representation of s.s algebra. We may reduce it by im-

posing covariant constraints which do not restrict their x-dependence through differential
equations in x-space,

Since D and § commute (anti) it is very convenient to define component fields of ¢& ,8) by
applying te ¢(x,@) the D, D's and then setting 8 = 0. The order of D's is important but the
difference involves extra terms which are just ordinary x-derivatives of lower dimenslon

component fields. é,(e) on component fields thus defined is readily obtained.
Q

3.4 - GENERAL REMARKS

Wess~-Iumino supersymmetry group introduced to incorperate boson-fermion symmetry thus can be
v1sual1zed &% arising from a supergauge transformation on a superspace with coordinates

(x .8 ) - (Salam and Strathdee) - in the same way as Poincard group symmetry corresponds to
Poincare transformation group on coordinates x*. The supergauge transformatians

xtext e gt e Tiqto
plus Lorentz rotations
% " % * g
is a subgroup of general coordinate transformations of (xt.ea). Ignoring Lorentz rotations
we have
dx'® = axt + % £ Yl de
de& = delx

(dx'* - 25 v* a0y = (ax - L5 4% any
Thus 1ine element invariant under Poincaré group and superpgange group is
Z . (ax* - % dytde)? + a5 (x4 L yg) de
For K = L = 0 we obtain a singular metric. Writing
2t = xthey)

;

as? « gzt g, (2) ar®

we obtain, T = (K - L Ts].
Eam " Bme T My

- i
Bga " "8y T - (B Y, ¥
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Bag =~ Bga = - B YN, B, P (T,

where we use Majorana representation for y matrices: C = ?g = - Y and Mow ™ diag(l,-1,-1,-1)

The inverse metric gac gCB = 6? is
glm - gml = phm (%)2 £ 5 YE T+

g -t eyt ey

g8 = - 2P - £ (T,

when

1

f =
K2 + 19

The geometry, though flat in space-time, is curved in other sectors.

The first attempts to unify gravity with other fields were made glong these lines by Arnowit,
Nath and Zuminc. They formulated a Super-Riemannian geometry over superspace with coordinates
A - (xl,ea]. The hope was that RAB(X,S) considered as a superfield may lead te a unified
dynamical theory of gravity with other fields.

With the definitions of super-trace and super-determinant developed by these authors it is
possible to formulate a Superconformal group of ZA. The algebra of the infinite-dimensional

general covariance group over superspace can be shown to be the closure of the algebras of
its three finite parameter subgroups: the special linear group, the superconformal group,
and a four parameter supergalge group to desentangle the ordinary special conformal trans-

formations. The closure of the algebras is under the modified commutators, presently called
graded commutator

MM,
M), M,} = MM, - (-1) MM,

M.M
where Ml[Mz) appearing in (-1) 172 indicates total number of Fermi indices appearing in the
operators Ml(Mz). The algebra defined here satisfies modified Jacobi identities and can ba
shown to be Lie-admissible as well as Jordon admissible. This property allows to classify su-

persymmetry algebras and extend to the supersymmetry algebra the techniques of Lie algebra.

Grassmann anticommuting variables and supersymmetry have alsc found their utility in for-
mulating a new pseudo-classical description of particles with spin. Casalluoni, Berezin and
Marinov gave such a description for § = 1/2 particle, The generalization for any spin was
subsequently given (N.C.,18,239 {'77); Phip.Rev.D15, 3568 (77)c/Nivaldo),

3.5 - INTEGRATION OYER GRASSMANM_VARIABLES

In order to write action in terms of superfields we need to define IB. Berezin's book already
had it, Por a single Grassmann variable & we have

Ie (const) = 0

Tg 8 =1

g £(8) = 25 £(8)
o 3 (0) - 0

T £08) 2 g(0) = & 5o 2L geo
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where (+} sign is to be used if f is "odd".

We also note that

(1) /g is linear (fermionic) "odd™ operator
@) s(8- 8') = (6-0")

G Soy foz £ - Jop Sor f

We also collect the expressions for super-trace and superdeterminant of supermatrix of the
form:

A r
M‘
A& B ’
where
A= My , T =M,
B-Mff N a-be
Then

Sup tr M = Tr A - Tr B

o
]

Tr (MIMZ) s - Tr [Mle}

det (M) & ¢T¥ In M

[4a]
'

§ - det {MIMZ) = (§ - det (Ml)) {(§ - det (Mz])

det (A - rB7la) _ det A

det OO = det B det (B - BA™

-]
1

1 ™

also for M = (I + X), X infinitesimal,
s(S-det M) = (S-det{M)) (S-Tr(M 1 &M))
To construct & supergravity theory we need to know with which fermionic flelds (and other
fields) we must combine the spin 2 field to obtain a bose-fermi symmetry. We will thus look
at the spin content of the representation one particle states of the supersymmetry algebra.Ne
will only consider massless case. A general discussion has recently given by Ferrara et al.
S8ince central charges have dimension one, in the massless case they will be absent.
L E R ij
Q. Q= - ("), Py 8
M, 7= -4 (o, @
rm’ o fm af <8
-i - .
[Q Ppl= @

The symmetric form of the first relation implies that spinor charges transform under an in-
ternal symmetry e.g.

[t Q= - ¢9* ¢

[12, Q1= - v (s%)¥ Q)
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where T?, a Lorentz scalar, and TS' 4 pseudo-scalar are internal symmetry generators Majorana
condition requires that (t ) ij be pure imaginary while {Sa}lJ pure real, Both t® and s? are
Hermitian N x N matrices.

In 2-component notation

{Qi. Qg} - cis Py sl

For massless case we choose the basis of l-particle states with standard momentum p‘-(w,o.o.w)
e.g.{|P...>}. On these states

1Q5, &3 = (o5 + a3y w 5™
gy e

1 0 ij -
2 [0 0] W &

Hence
{Qi. Qi} - 2w st
and
Q=0+ 8 «haf-o0

Since L.H.5. is pesitive definite we get Q; =0 = Q%. Q; creates zero norm states and should
be ignored in counting physical states. Qi span a Clifford algebra of N-complex elements.

The “11tt1e algebra" corresponding to this basis with standard momentum P is the sub- algebra
aof SP4 which leaves |P +«.> f(or P) invariant. It is generated by Q Q“ a’ TS’ JS' 01 Jz.
MIZ Jq- The last three are the generators of E, = so0(2)@ T, subgroup {in fact Pauli
Lubanski vector v, {p} = v MHY p . w,p = 0,reduces to Wy S - Wy WM e Wiz, W o~
(MZU - } W, -( MO + lg) w).To have discrete helicity states we must set translaton
operators of Tz, viz w;,w, to zero. The physically acceptable "little algebra" is given by the
supersymmetr:c extension of E,, viz, Ql‘ Qi' T2 T5 J From the commutation relation of J3
with Ql and Qi it follows that Ql and Ql are ladder operators. one raising the helicity by
1/2 while the other lowers the helicity by 1/2.
The helicity content may be easily obtained as below:
Let X be maximum helicity. The possible helicity states are
Lowering chain:

ArO-Pr s -H 0D

T -
Mu1t1p11c1ty.“{x]....1
Raising chain:

SR B R N R S N IR

N

Multiplicity:,{x) .
Total multiplicity = Total number of helicity

N
states = 2 [2] = 2.2N
0

However, when
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the two chains coincide and
- - N

Total Multiplicity = 2

We give some illustrations:

N=1

H

(2) agaxl = 2
2+ 3 -3z
Particle content: (S = 2) + (S = 3), Multiplicity = 4
Field theoretic representation:
e: one gravitaton
¥, Qne gravitine
Here y is world or curved space index.

®) llmax! -%

1 3
Iz AR ¥

Particle content: (S = 3) + (S = 7), Multiplicity = 4

Fields: Tu, Au

(©) Diggal * 1
1+%— --]2'-1-—1

Particle content: (S = 1) + (8 = 3)

Fields: A , X
u

@ [Agaxl = 7

oo
Particle content: 2(5 = 0) + (§ = %)

Fields: A, B, x

N = 4, Ixmaxl = 1:
1 1 R
1+3- 0 +-3+-1 Lowering chain
1 1 1 - .
3 0« - 7+ - 1 Raising chain
Multiplicity:
1 4 6 4 1

Particle content: (§ = 1) + 4 (S = %J + 6 {5 =10)

Total multiplicity = 2" = 16 .
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N =8, |2 = 2;

maxi
Particle content: (S = 2) + B(S = %) + 28(§ = 1) + 56 (B = %} + 70 (5 = 0)
Multiplicity: 2N = 256

N=7, Ilmax[

I

Particle content: (5§ 2) + (7 + 1)(8 = %) + (21 + 7) (8§ = 1) + (35 + 21)(8 = %J+[35+35)(S-0%

Multiplicity: 2z . 2N = 256

If we require one gravitation we must stop at N = 8. Since particle content of N = 7, 8
coincide we have 7 different super-gravity theories. For N = ¢ we get

N=9: (§= §)+(9+1)(s = 2)+(36+9)(5 = §]+{34+36}5(1]+(126 + 84]5{%J+(124+126](S = 0)

8=2 3/2 1 1/2 ¢ MLLTIPLICITY OBSERVATIONS
1 1 4 Simple Super-gravity
1 1 4 Spin 3/2 multiplet
N=1
1 1 4 Vector multiplet
1 Z 4 Wess=Zumino Scalar multiplet
1 2 1 8 0(2) Supergravity
1 2 1 2
N=2
1 2 2 8 0(2) Super-Yang-Mills
1 2 4
1 3 3 1 16 0(3) S.6G.
N=3 1 3 3 1+1 16
1 3+1 3+3 16 0(3) S-Y.M.
1 4 6 4 1+1 32 0{4) 5.6,
N=4 1 4 G+1 4+4 32
1 ] 6 16 O[4) S-Y.M.
I3 5 10 10+1 5+5 64
N=5
1 5+1 |10+5 |10+10 54
1 6 15+1 |20+6 |15+15 128
N=6
1 6 15 20 64
N=7 1 7+1 |21+7 135+21|35+35 256 0(7) S.G,
N=8§ 1 8 28 56 70 256 {8} S.G.

EXTENDED SUPERSYMMETRY MASSLESS REPRESENTATIONS
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5_- L INEARIZED SIMPLE SUPERGRAVITY LAGRANGIAN
5.1 - LOCAL SYMMETRY. COMPENSATING GAUGE FIELDS, NOETHER COUPLING TECHNIQUE

In Sec, 2 we constructed Lagrangians invariant under rigid or global supersymmetry trans-
formations and where the fields carried a representation of rigid supersymmetry. We would
now like to promote the symmetry tc a local one so that the fields carry the representationd
local sypersymmetry. We will illustrate the procedure by considering well known simple
examplés.

Consider the Lagrangian of a complex scalar field:

Ly = (3,0%) (2%) - m® ¢%e

which is invariant under ¢$(x} » ¢'({x) = e~ 1a ${x}), « = const. The corresponding Noether
current is

LB . A t- .
iy = ie [0%5 o - M) o™, et -0l

For local symmetry, o = a(x), the kinetic term in L0 is not invariant, since,
2,0"(x) = e ¢X) 75 4~ 503 0) 4]

We must introduce a compensating gange field A,(x) and the covariant derivative

s &
Dz(A) = (aﬂ - ieAL) such that (DE¢)' = e'l“(x)(D£¢). The transformation property of the gauge

field then follows ta be
= i
Aj(x) = (A, (x) - 3 3;)

and the Lagrangian invariant under local U(l) transformation may be written as

z

L = (0,07 0% ) - nle% - ;oA -0 807 = Ly« jha el etorata) - Fa Am304,) 2

The additional terms needed are a coupling of the gauge field with the Noether current, a
contact interaction term and the kinetic term corresponding to the (massless) gauge field.

The necessity of such interaction terms in general may also be seen as folliows. Consider

L= L[e, 3,0

where ¢ is a Ffield multiplet. Then

al 3L al 3L al |
SL = 86 2L+ 5(3,0) - -5 I:- . _|+3 [a.p ‘
kD) 277 308,87 LR It RIS R TE I )0
where
& = ¢ (x) - ¢(x)
Global invariance implies

L = 3, (s At x)) , £ = const.

so that the conserved Noether current is

)

sjﬁ-[ﬁdi-rg:T-si\

€ 3 4 p

)
LN

When € = e(x) clearly
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S AL R le(n) AMED) + (3,0) STO0)

e ih 4 o st

or

Thus
6L = 3,(e(x) &%) + (3,8) ji
L 28 IN
and to compensate for (3£e) j§ term we must add te the theory a gauge field A, and an in-

teraction term of the form j; Ay Additional contact type of interaction terms may be re-
quired to make the complete Lagrangian locally invariant.

Consider mext the case of SU(2Z) Yang-Mills theory described in terms of the fields Ai (i=
= 1,2,3, the isospin index). The linearized (free) Lagrangian
= - 1 L] zn - -
Ly T %Lm % ’ #zm (3 Im I xl)

is invariant under global SU(2) transformations 611 =% x Iz and lecal abelian gauge trans-
formations GIE = aul. We will reconstruct by Noether procedure the non-linear interacting
theory. When SU(Z) becomes local e.g. a = a{x) we have 612 - %(x) x 11' 8L, = (323] . 31
where 32 - - Im b %lm is the Noether current. The Lagrangiam L' = Lg - & Ts - 31 is
locally invariant to order gU if we combine the initially independent lecal and rigid trans-

formations of the linearized theory together and identify % - % a(x) so that

sh, = &) x K () % (3,%)

¥We continue this step by step process of amending Lagrangian and transformations order by
order in g untill we have a locally invariant Lagrangian. In the present case

suto= - g x K - (A x ') .
We find
L" = L' + § (Kl x XnJ . (In X Il) = - % an .

where

B (078, -3, R -2 K x Xy

is inv ariant to order g. In fact L" is invariant under the above local transformation to all
orders in g and we recober the usual ¥ - M theory. We find for the commutator
- 1 . =+ . 0+ ‘]_ - . -
[8;. 850 11 -8, x (g3, &) *apx 11) -2 -2 3, (G,x3, )+ (&,xa; }x Kl 815 1%
Thus we have a set of local transformations which have a closing algebra, and which have the
Lagrangian L invariant.

5.2 - LINEARIZED S-G LAGRANGIAN (ON SHELL)

From the s.s. algebra we find that if we promote the global symmetry to local symmetry we will
end up with gemeral coordinate transformations. To preserve the local s.s. invariance in a
field theory slready .invariant under rigid s.s, we will be obliged to add compensating gauge
field Yl(x] just like in q.e.d. to assure local U(l) invariance we must add gauge field
Az(x]. Thus a massless spin 3/2 Majorana field !ltx] must enter the theory if we require
local s.s. invariance. Moreover, this field couples to the Noether current of global s5.5. But
L7 will itself require a massless companion of spin 1 or spin 2 to preserve the supersymmetry.
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Since gravity (s = 2) is necessarily coupled to the stress tensor of all matter,it is natural
to take (2, 3/2) as N = 1 supergravity multiplet. A (3/2, 1) supermultiplet as the gauge
field not only forfeits connection to gravity but does not give a consistent nonlinear galge
theory since neither the real 3/2 field nor any other real matter fields can couple minimally
to photon (s = 1). The natural place of this multiplet is as a "matter"” multiplet coupled to
(2, 3/2) where it leads to O(2) extended supergravity. In view of the discussion in Sec. 5.1
we may write the linearized supergravity Lagrangian 10 as the sum of Fierz-Pauli spin 2 (li-
nearized gravity) and Rarita-Schwinger spin 3/2 Lagrangians:

o _ im
L Lpp (h™7) + Les(¥,)

gmy _ 1 o, 1} g L
Lp (h2™) 1 [hzm’n h zhh + 2h*h,, - b, b ]

3

Legs = - % g MNP ?z Y5 Yo Tp

RS

where

- = o = |3
Bem = Bpg o By =93 By . h=h7
and a comma indicates ordinary derivative,

0

L” is invariant under two separate Abelian gayge transformations

ahzm = az Em * am El(x)

§¥, = 3£ a(x)

and under rigid {global) supersymmetry transformations (non-Abelian):

=iz Yy a1 Ey. ¥

sh -

tm

6¥, = (3, h ) g™

n Yim £ € : constant,

If we now require lecal s.s. invariance e +e(x) we must add an interaction term of the form
K TlaJ; when Ji is Noether current corresponding to global s.s. invariant and K the gra-
vitational coupling constant. However, with this term added we also require a term X h Tl.

since J‘ under s.s. transforms into the stress tensor of the system, to ensure the lacal -
of the 1nteract1ng Lagrangijan., The final 5-G Lagrangian is invariant under a single non-
Abelian s.s. gauge transformation.

The linearized supergravity differs from the Wess-Zumino model. One has to take into con-
sideration the gauge transformations in addition to rigid s.s. transformations in order to
obtain a clesed algebra. The commutator

Loe), (=] (£ield)

(field) gives rise to, on using equations of motion (on shell), space-time translation. The
commutator of a gauge transformation and a supersymmetry transformation on the field should
vanish or give rise to a gauge transformation on the (same) field. One may show that the most
general rigid s.s. transformation consistent with these requirements is as given above.

The requirement of local super symmetry invariance for the Lagrangian of the simple super-~
gra ity multiplet leads necessarily to interacting field theery and unifies gravitational
field with a spin 3/2 field. The difficulties of such a unification are the highly non-linear
nature of general relativity and the difficulty of coupling higher spin fields in a con-~
sistent way. It was shown by Freedman, Van Nienwenhuizen and Ferrara and DeseT and Zumino
that the sum of the Einstein action and that for a massless, (most} minimally coupled, Rarita-
Schwinger.Majorana field fudfils the consistency criteria, This is due to the requirement of
local s.s. invariance.



- 277 -

We make some remarks on the off-shell formulation. On shell hmm and Wu each have two he-
licities. However, off-shell h, = h ., has 10 degrees of fredom minus 4 gauge degrees of
freedom giving 6 bosonic degrees of freedom. The field ?? off shell has 16 minus 4 gauge
degrees of freedom, giving 12 fermionic degrees of freedom. Assuming the existence of a

minimal formulation we need 6 hosonic degrees to balance the bosonic and fermicnic degrees of
freedom. We also require that the auxiliary fields do not propagate e.g. there is no kinetic
term in the Lagrangian corresponding to them and carry dimeasien 2 so that they appear as
squares like in Wess-Zumino model,

5.3 - SPIN 3/2 RARLTA-SCHWINGER LAGRANGIAN

- _ 1 _yvpo g
lgs =~ 7 ¢ Y¥s Yy 3 ¥

Spinorial gauge invariances (local)

L}

6?0 - Bc € (x)

Equations of motiogn:
§ L
———gﬁ =0 =» R¥ = ¢WVPT Yg Y, Bp ?U =0
8 Tu

under gauge transformation &R¥ = G,

Gauge fixing: cheoose the gange v ¥ = { (under gauge transformations &(y » ¥) = Fe. This can

be solved to obtain the gauge v - ¥ 0). Now we have identities

B,-, 0 o TR -3y, (¥t R)

- uwv 1
By » ¥) - (& -¥) = 2¢ 3, %, = 7Y R

Thus in the gauge chosen the equations of moticn R = O lead to:

(s » 3) Wv =0
Po=> Oy, =20
3 ¥ =0 H
i
This is the usual way of writing R.S8. equations. We remark that L1/2 may also be written
in an analogous form:

- _MvaB = - 1
I..]./2 € X Y5 Y, Yy Y4 aB Y E- 5 I

The mass term takes the form
m "B S vy vy v, A
5 T 'vw ' '
Thus we must check that there is no helicity 1/2, but only 3/Z (massless cases) in LRS‘
Coupling to E.M, field complex R.S. field:

uvpo - -
€ Y5 Y, (ap ie Ap) ¥q 0

Then

_ 3 . . Hvao L -
(3u ie Au) £ Y5 Yy [3p ie Ap) L 0

Using

[ap -ieA,d, -ie ADJ ~E
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we find

Extra constraint requires that either ¥, = 0 or that photon be a gauge excitationm. This
inconsistency is a rule in all higher spin field couplings.

6 - TETRAD FORMULATION OF ORDINARY GRAVITY
6.1 - TETRAD EQRMULATION

Since we must work with spinors we must use tetrad formulation. Spinors can only be introduced
locally in the tangent space.

We specify a local frame by giving tetrad fields eg[x] and ei[x). The Greek index indicates
the curved space (world) vector index while the Roman index indicates a vector index in
local tangent space. Given a vector AP(X) its component reffered to the local frame are

atex) = ei(x) A ()

The components Ai(x) are world scalars but they transform as a four-vector with respect to
local transformations which rotate the local tetrad frame. We assume that e: are linearly
| TR %

; azH U - &k
independent and e, e, 6. It follows then e e, Ll

Clearly, AY Bu = ei At eﬂ B_ = Al B,. The vierbein or tetrads themselves have mixed indices

transforming as a world vecTor and a local vector. To be definite we will assume the local
tangent space group to be Lorentz group L. There are two invariances involved: the invariance
w,r.t. general coordinate transformations and the invariance w.r.t. local Lorentz gauge
transformations. Thus we require, in order toc define covariant derivatives two sets of

affinities or connections.

Consider local vector field Ak(x). Under local lorentz rotations Aﬁté):
Aty = At A
(3,471 = o, Aty = Af AT ¢ o AT AT

and (au Ag} does not transform as AY due to the presence of the second term. We define co~-
variant derivative

L | A} m
1Y = =D A
!] A (au * ru} A um
such that
o, a4 = At (o), AT
H m H
or
L 2 m n - ¥ m m n
[am au + rum) A [ﬁ) A7 (x) A (é) (an 31_I + Fpn) A
or
rm _ 2 oom R m
rum A n Am Pun am au A n
ar
F.R - Al rm' {A-l)n - (0 AE }(A—l)n
L om m' "un m B n m
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Writing
- ¥ . )
I, = (o) . A=)
1 = -1 - -1
T A Tu A (auh]A

is the transformation law of Fim. We will adapt the usual notation ru > w, SO that
V- -1 _ -1
) A e A {BuA) A
and
| - £ Pogam
Du A au A%+ ®im A
Requiring that
o )
Du(Al B¥) au (A, BT
it follows
D, Ay = 3, A, - al, AL
u R [T A UL

Consider next the Dirac field ¥{x). It is defined tec transform under local Lorentz tran:
formations as follows:

¥'(x) = S(A(x)) ¥(x)

vwhen S(A) constitutes a representation of the Lorentz group., The covariant derivative
Du - {au + Fu) is required to satisfy

(D, ¥(x))* = S(A(x)) (D, ¥(x))

or

(3, ¥ T|) 100 = (3, + T)) SIAGN) Y0 = S (3, + T) ¥(x)
or

I, S¥=8Sr ¥-(3 5)¥
aT

rpo= S T, ST - (2, 5N 5T (AG))

Consider infinitesimal transformation:
S = I+ 72" o,

Ty =Ty * 7 MR Logns )] - % TN A

"
where
) Ty ) i - —
A (ﬁ) vos m "’ A (§) ’ lzm le
Also
% 2. 1 n o _ n _ )
“m T Om t A R Ym T Y M A

or
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6wu =[x qu - 2R

We derive for

Cem]
w = 1 (m.l]'l'l._ wm!,}

v 7 i
wl[lm,|= J:zmq ) J:nm] ) J_an -
" " n %y u n =~ %y
and
1, am 80 ] ’
T AT, Luim’ol‘m‘J
1 .im E"'m‘:l
TA ey, (g %' = "eer Comt " Tpme Ot * Tgme Omg!
pr Len ] o, Cem] L -
7 [”u Ay T * Uy Am Tmret
We may thus write
al [en] 1 im me 1 Em
ru T Yam Yy T a!.m(wu Twy ) 7 %um Yy

ru sees only the antisymmetric part of mim; we do not have to impose, a priori, any symmetry
PTOperty on w0

um*
We remind that the matrices YL are invariant under local transformations:

P et sie) vt sTTae)

g y™ 5'1 represents the transformation of operators acting on ¥ which transforms as ¥ + S¢
and ﬁz(x) is due to vector (local) nature of the index "2". If we define Y%x) - e%(x) Y‘then
under local Lorentz transfermations:

TR0 = o) Yh el A Ak s P sTh e el sy 5Tl = sy sTHGO)

Under general coordinate transformations:
¥(x} » ¥(x}
tH
Y -+ %‘*—) ¥V (x)

Yy

ax¥
@, + (=5) 6,0
e.g. the index uy in m:m or Pu is tensorial. However, the indices %, m here are non-tensorial
w.r.t, L; w, is a connection.
For world vectors AY (which is scalar w.r.t. local transformation) we have to introduce co-
variant derivative through space-time connections rip

¥ . u U a
A¥ = a, A¥ s pR oA

Requiring

- ’ |
(¥ 8., = 3, (A% B)
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leads to
- - u -
Ajy = 3, AL - TH, A |
The affinities r;p transform as
ST ' ar axP o 3%xB ¥
roplx) = = S 5 Tag(X) + —— 5
ax ax'Y - ax! ax'Vax'P ax

e,g, non-tensorially. It is easily verified that
2
Du §p = 0 .

" -
Gv;l 0 .

The complete covariant derivative (indicated by ;) of tetrad field is thus written as

L o £ £ m
r eu + wy eu

o 1]
- e

H H H
€2 * Tax ®4 ~ 93 ®p

L
These definitions are consistent with A = ez A£ etc, For the metric tensor Ny in the
tangent space

Il

= - n - = -
nlm;l aA Mom “x2 Mam “ym Mgn (whmm *

Uyemd T 7 2 9 0pm

Thus the symmetric part of m:m is seen by the covariant derivative of the metric in tangent
space,
Covariant derivative of YL requires a bit of care. We write

yox) = 5% prf(x)
¢,8 are spinor indices. Then ?a carrying the contragradient representation transforms as

. o re-1T ¥ o -l 8
o (x) = (ST (ANT g8 = (TN Y,

and (?“Eu} is invariant under L. We may also write explicitly,

£ o [N )
YA (o}

| Y ) |3 o -1 3 mo
(g = AT, S, ST v

e.g. YI“B is an invariant tensor. Now

DuT = {au + FU) k4

or
vd = g @ 4 pS B
u H ug
From
(%,)., = 3, (¥% )
we obtain

- _ B
?u;u auva Pua ¥

8
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Thus for complete covariant derivative of 12:

Lo - 3 Yza 2 I ko |3

[+ o
LA TSRS Bt Y gt NheY g TP Y o

11

- P ) -
YT Yty |

e N S AN

We show easily
v u o u-
tANPULIL IR AL IR SO AN PR

From the relation

im n- hod ne
Co®, ¥27 = o™ ¥ - oot 4o .
we derive
Cu oim n--!I= w Byt oo nm
im » F g ¥ m Y
Thus
[ry. v"1= 3 G, " - o2 ¥"
wr P47 Y jm

and we obtain a useful identity:
) m - L 1 2 3 m
oyp ¥ L Y g oy *ayy)y
it feollows

1,2 3 1, &m 3 1
B AL U RALE AT SRR AR N

since yl are constant matrices. From

£

TR GRS I

¥We rederive

o (Am)
T2 ey

The covariant derivative of y® thus sees the symmetric part of mim. Except for the facility
in using traces of y matrices all the relevant information is already contained in e}i.r’nmm and
their covariant derivatives.

The space time metric tenser guv(x) may be defined as

s of oI
guv(x) eu v Mam

HV - ob oY Am
gh (=) €y e 7

Also
Mem = &y
&m vy 2 m
v

n" o= gt el e

These relations are consistent as regards covariant differentiations. One also checks the
consistency of -
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(V). Yoo = 2 g"le)

and check

{Yuva}.;\ - 2 guul etc,

6.2 - CURVATURE TENSORS

Corresponding to the (Lorentz) gauge connection wy = (wim) we may introduce a field strength
or curvature which is gauge covariant. This is similar to the case of Yang-Mills theory or
ordinary electrodynamics. We find that

P p(m) - 3l wy - ap 0y +|_mk.m

p

transforms as
Py, —p— A P ATl
AL Ap

We will write

fap () = [Py, @7k

The space-time connections Pap give rise to space-time curvature tensor
n - u H B -
R vkp(r) 3y Top * Fsa rup (A -+ p)
The two are connected by the following equations:
) _ ok + o _ = no L _ o2 m
Ap(F,m} eu;pktr'm] (Tlp Di] e (r w) R (F) ey R mkp(m) eu
If we impose the condition e:,l(r,m) = 0 we obtain
o « n? m o
Ap(r) R mlp(m) eu ey
We note also
SIS N | n
EDR’Dp-leu R mlp{w] eu
when
mL
P H pm U pH pm U
Note that the indices on curvature tensors are all tensorial unlike those on connections.

Tetrad cendition el_l (T,w) = 0 estab115hes a relatxon between T and w. It should be possible
to rewrite Einstein actlon in terms of et and o* . Note that

] um
£ m
uv A(r) "zm;l eu €y
If
l =
eu;l 4]
we get
- & .m _ Loom
By T = nypan 24 &y 2 @ycem) %y Sy

In Einstein~-Cartan theory, g l(I‘) 0 implies that mim = - mlml_ This may also be verified

sk . ”“ e . . {& m)
from explicit expressxon of ) in this case. If wy = 0 the E.C. geometry is

obtained only if eu 2 - 0.
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We may consider mere generaly the tetrad condition:

L o= 2 m
eu;ér,w] K e,
Substituting this in the equation .bove relating Rg}prr] and Rtmlp(“) we easily establish

that if K, satisfies (independent af F!!)
P (K + Loy KT - [w Ky =0

the following relation is satisfied:
R®, (F) = R* . (w) e™ &
uAp mig VR )

But the relation just preceeding this is equivalent to lelp{m+K) = lelp(w)' The expression
of T is easily shown to be

1 L

e TG o
Tt L an %y g

- G =
wr ol i Ly = K

=
ruk
Thus the sets of connections (T, w = w + K) and (I,w)give rise tc the same curvature temnsors

and correspond to curvature tensor copies. See more details in “Curvature Tensor Copies in
Affine Geometry", P.P.Srivastava, C.B.P.F.preprint N.F.-049/81,

6.3 - KIBBLE - SCIAMA FORMULATION OF EINSTEIN-CARTAN THEORY, {SKETCH)

Assume tetrad condition ei'l(r‘w) = 0, then,

= g9 VPRY = g¥P
R(g,T) = 67 g"PR¥(T) o - £7°R, (D)
- 20 Jvp 4 m L
Gu 8 ez ev R mpa(“)
- aHi _vm -
[:] e Rzmvu[w) = R (&,u)
and
= oMl PR
R(e,w) e lepk{m}
A -~ & 14 -
= 7 Hpo(e) M) = Hife) . [uyy + o} W]
where
(e = (6] of - of e
Now
. o
suv eu “zm ev
det (g,,) = det (ei} - det (ny) . det (e})
From
By o gt
eu €n Gm
det (e%) . det (eF) = det (&%) = 1
u m m
Also

det (g"°) det (g,,) = det (8)) = 1

Call
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2
= det
e e {ep)

g = det [guv)
n = det (n,_J H n2 =1
im !
Then
_ 2

g= n-e y e = VAg

vy o 1 by o 1
det (g7} g det (e}) = 2

We remind g(x) is scalar density of weight + 2 while % is scalar density of weight - 2

that

euvlp .1 uvAp

—_— E

e = /Mg ¢
HVAD uvip ‘,ﬁ

are tensors. (d4x) is a scalar density of weight {-1).

From
e SO .0 P .4
e €uvpo ey &y e, o mnpgq
we derive
e g _ .m_n
e Euvpo ep, eq, e, e, Canp'q’
and hence
m_n uvpo p .0 p oo, _ po
8 & € E = 2 e(e e’ - &b e = 2
u ®v Fmnpq (ep €q = %q °p) e Hpq(e)

Thus for scalar density (weight +1)vng R(g,T) we get

/7§ R(g,T) = & c¥VP9 Canpq o REQ(w)
_ Ap -, im nk m -
= e Hmz(e) [_f.u’L o + oy ® -
= e Rie,w)
Here Euvpa’ [3
mnpg

other has weight zero. For the variations we note

L
Gguv Z(Geu) €50

Ge: - - eﬁ ez(a eﬁ}
S8y, = = 2 ey, eﬁ ez (6 ep) = - 2 gy, 93 (s e
+ - [gup eﬂ 8 e: * gy, eﬂ 5 eﬁ)
The action is
S =8+ 8= fLlgdix + L, M = matter

For integral spin fields 1"V (= t¥¥) is defined by

ot

- .1 uu L
-85 Sy gl g )dx=1rg e

are permutation symbols; the first is a tensor density of weight + I,

s ei) a%x

50

the
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Define:
2 L _pv
Tu gpu ev T
then
oA _ _o% X _ on % %
T ER o €, = & & Ty
For spinor fields, Ly contains ej and uim. We define Spin-density ;Em by

_ 1 u im .4
Gw 8y = % f Yom qu d’x
or

$y Ly = % cgm Gwﬁm

In the usual formulation of integral spin case in ordinary gravity only covariant curls, e.g,
{auAv—auAuJ. appear. The space time connections F:vdo not appear in Ly. The matter couples to
gravity through most minimal interaction. For spinor fields wﬁm crops up in the cevariant
derivative Du = (au + % mﬁm Uzm)‘ Again for spin 3/2 Wu field appearing in supergravity
theory it is the covariant curl (Du?v-Du?u) that appears in the corresponding Ly rather than
¥ - ¥ which will involve space-time connections T* . This most minimal coupling

Vik © Tngv By
does give rise to a consistent theory. In the Ly the wim term appears in the form

3 L
Mooyl Mo Am

n 7 n &m
a(auW) B(Bu?)
so that
- 5L -
1 4 M m
8§ 8§, = JF d'x Sw
w "M 7 La(a ¥) Lm 1
" -
and
]
t:m = h__fﬂ_ %m ¥ spin-density
B(BHV}
Thus c:m is generalization of the spin density of ¥ that appears in special relativity in

association with the density of orbital angular mementum.

6.4 - PALATANI FORMULATION IN TETRAD FORMULATION

The gravitational Lagrangian is

= 1 wvpo m N .pq
LG EE? € Emnpq eu e, Rpu[m)
We vary et and wﬂﬂ independently to obtain equations of motion: §,5=0 gives

n_1 - Z . n
e[R; - 3 e5 R = K Ty

when

n _ pni p
RU R (m}pa e,
8 Ly

o
§ e
R = Re,uw)

=1

apg



Now
_ it - pid A = phm A .
Rup(r) = R Upu(l") K 52) enas R o ©m edl‘ Rp €5y
where
L _ Ok
Rp e RUQ
We obtain
2
1 . K
(Rpu 7 gpc R) = /g oo

It resembles the usual theory except that Ruv and T,y Aare not necessarily symmetric.

Next connder aws = 0 we note that

fw X

mL . me
§ R pl(m) = [Dp Su - Dl

6mm£—|
p -
correspending to the Palatini identity in ordinary tensorial formulation of gravity, It
only Du rather than full covariant derivative which appears. Note alsa that it follows
the transformation properties of connections that {(the difference) Gw:m is tensorial on
its indices. Thus
mi,
Dp(Gu:1 )

_ n m ng 2 mn
= 3p(6wl )+ mpn(ﬁml )+ mpn(ﬁmX )

Equations of motion ate derived to be

Ao 49 7p P . P - g2 A
£ ey LDpeu D e | L e

1
Z “pami 1%p-

is
from
all

This looks like a dynamical equation. However, if we impose the tetrad condition (it does not

follow in Palatini formulation) the equation reduces to apn algebraic equation. Tetrad
dition gives

[ Hp o

Defining torsion,

a4 e oo
ZSUO (FDD FDH}

we obtain

Wedp q P @ _ _ 2 A
€ et e sup Koo

€pame v To L

which lead to the algebraic relation:

S;k+6§81—6‘;sp-§; 3:1
where

S;A = Eéi = ;%% is Spin-tensor
and

C‘A"p H e'; e: C;n . Sp = Sc';u

Torsion tensor is essentially the spin tensor of fields other than gravitation.

v . K v o1 v 1 v
Spl =z (Spl *7 6p 5 % 8 Sp)

con-
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where

S, = 554 + 5 . 5, = 554

7 ~ LAGRANGIAN FOR SIMPLE SUPERGRAVITY
7.1 - NOETHER COUPLING METHOD

Noether coupling method mentioned in section 5.1 was used in the linearised supergravity
theory of Section 5.2 to build step by step the first non-linear Simple Supergravity La~
grangian in the second order formulation by Freedman, van Nieuwenherizen and Ferrara. The
local supersymmetry transformation and the gauge transformations become knitted together as
in the case of Yang-Mills theory. A first order formulation was given by Desar and Zumino.
In the first order formulation the action is simply the generally covariant and locally
Lorentz covariant form of the linearized action (K = 1),

856 = S * Sgs

-1 = 1 _uvpo m N ppq
LG ze R(e,w) TE emnpq e]_t e, R po(w]

- .1 _Auve g
LRS 7€ ?l Yg Yu D]J Tp
where
- L e ol oV pim - 1  im
e = det e . Rie,w} € €p R uv(m) . Du Bu * oz o 9em

Kote that only the curl enters LRS' This allows us to use Dva instead of using the complete
covariant derivative Yp-v which involves an additional term dependent on space-time

connection Ftv. This is'analogous to the coupling of Maxwell field in ordinary gravity where

Foo = @, Ay -3, A)

which is a covariant curl and gauge invariant is used in place of A, ~ Au-v‘ This last ex-
pression differs from covariant curl by a non-gauge invariant term {I‘ﬁv - r:u} A The
curl (Dv *p - Dp Yv) respects the gauge invariance of LRS in a covariant fashion as discussed
below,

Now eﬁ, w:m and Tu are varied independentiy. Auxiliary fields must be introduced if we couple

the theery to matter, We will consider them latter.The equatiocns of motion are:

sv: RE = eWVeB oy et p - 3t ¥y = 0
Gw:m: C:“ = D, e; - D, eﬁ = % ?v ¥¥ Yy
Be:: gt =W . 1 M gy - TR
where
Tl“:%-%-E““uﬁTuy ¥ Da‘i‘s

The non-vanishing of C&G indicates that we have torsion, since,

L _ B 1 ; -
IJ‘.l e ra“ eB if e 0

For C&u = 0, the equation implies vanishing torsion
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We may solve the 2nd., equation. Write

tm . km . sz
“y w (&) n

when w:m(e) is defined from

uk u afk , B wn
IR + {av}g e mvée} e 0

ar

im =1 L my _ _m Lu N £ om _ m ol n
w, (e) = % [eu ¥, e e 3, e+ [w}g(eu e e, e )

Here {J;} is to be expressed in terms of tetrad fields using gh? = et eV etc. We may  Show

1
that

Yy Ym Y Y Tt ¥ Yy) T - Ky

If in addition we impose
£
cu(m,l');A [i]
we define a space-time connection r:v.

We observe that the manifest local gauge invariance of R.5.field is lost. Also the 1lst. equa-
tion has a free index, so that the question of consistency arises. Does IZIHR"l =0 by virtue
of the other equations of motion? Precisely this was the difficulty encountered in all
previous attempts to couple higher spin fields to gauge theories such as electromagnetism or
gravity.

What makes the consistency at all possible is that in DuRu the commutation of two  covariant
derivatives reduce to the Einstein, rather than the full Riemann tenscr, through the in-
terplay of Dirac algebra and Ricci identities. We have

. .1 atp 1l uvapg 2
DHR = 3 G Yy Yu A Cuv Y5 Ty Du ?B

But there is another identity derivable from Fierz rearrangements for anticommuting spinors

_ 1 uvoaB 3 ]
L ¥ r- i ¥ oy ¥

1 oty
z T " u v

Y5 Yy Du Yﬂ =0
Using this and the equations of motion one verifies the consistency

D RY ¢,
o

The total variation of Sgq vanishes under the local s.s, gapge transformation:

sed =i 34ty
" u
= 2D
6!u uu
- _ 1 B _ v
6mul.m BuLm Zz (enm Boan © €us Bumn e™)

where

Ay s o= Auvp
Bz ievgy, Dv Yp £
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The equivalent 2nd. order form is obtained by substituting w = w(e) + K in the Lagrangian.
The variation then is taken with ei,wuas independent fields. A contacts Seagull term arises
=& m .M.z
¥ (

+ ¢ - . .
Yoy, ¥ 2 Yy vn) 4 (¥, ¥ ¥)

7
m n =

The three invariances, coordinate, Lorentz and supersymmetry are mnot, however, independent.
The commutator of two independent s,.s. transformations characterized by {(£(x),n{x))yields a
general coordinate transformation corresponding to the real displacement ifgy"m). together
with field dependent lorentz and s.s. transformations:

- & _ x, _& o L 1 _a 3
Logley), sylepd e, = 8g(87) e + & (8 u e+ Sgl- 7 &7¥ )e,
where

% = 2i B ¥ £q (x)

and

- L = 1
[Gs(sl},ﬁs(sz)_[wu =asone;+ g Yu‘z(T Yy Bup * % € apt 75 ) RT +

e

- 1 T g
* € @ €2 {7 cpu guT * gup Eor * z Epatu *S) RRE+0+0

{on-shell closure].

¢
7.2 - SUPERGRAVITY AS THE GAUGE THEORY OF GRADED POINCARE ALGEBRA
Generators of SP4 are

= {P™, M g}

XA o

&m = A

and we indicate the corresponding parameters by {a, M, e, } = n". When these parameters, in

a globally s.s., theory, become x-dependent the Lagrangian is no more invariant and wve need
to introduce compensating gauge (vector) fields

tef), o), ¥} = hx)

to define a gauge covariant derivative Du' In the present case, £,e are local tangent space
indices while is the world vector index. We also define

n(x} = nA(x) XA = ay P™ 4 % *im M, e Q

which is Poincaré superalgebra valued scalar field, while

is super-algebra valued vector field for SP,.
Let us remind the case of Yang-Mills theory in flat space-time:
Lo, sk T8 - a i
A Aa T y w ua(x) T . (Ta,Tb) i fabCTC'

For the gauge variation we have

1 1
s({gauge) A: - -5 ;b wp = - g (D”m)a
or
1

s(gauge) A¥ = - 5 (2} + ig [o,a¥]
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Here

TR uo_ u
Dy (Gab a g fabc Ac].
In the present case analogously we write

s {gauge) hu = au i - ,
8 (gauge} hﬁ = (Dun)A

A A

A B C
(Dun} au" * hu n fCB

where

/

(X, Xgol = £ Xo = XX €DABx,x,
and
A= 4, (sm), o
are tangent space indices. The summation in Du is over all gauge connections, not only over

the Lorentz connection. There is double counting, e.g., translations appear in the
base manifold and in the tangent group.

We note
(0,m*%, = Gt x, + i BB nCxgx]
= (aunﬁ) X, + 1 hf o (XeXpm (-1 )
=, n+ 3Py - (170 )
=a,n+i[n.h]|
Thus

t(gauge) b, = (@m X & (ee™ B+ 3 (0P™ M+ (68) Q
From

- - 1 - 2 1 2m 5
|_“'hu-| = Ea'P * -2- AM o+ EQ'euPL + T w]-' Htm * ‘{I’u Q:l )

(s¢0) Py = (3,8 Py + 3 [a.Pou, M+ 3 [aMe P]+ 1[50, .00

- S0 &m _ _ s . Mm .
[_a.l’.ml_l M= - ia w, (MgnPp-ppPe) = - i " (a,Pr-a P,)

by =] » § EM_T _ I _
El.M,euPlJ i3 (g Py-ngnPy) = 1 A" (e  Po-e (P))

- T A e = B
[eq. ¥ Q] e v ¥P,
it follows

£ .- 2 2. .mt &m
- + 7 + a
aeu - ieyvy wu e {(x €m ©, m]

where & =é&(gayge}. Note that eﬁ

tern 2 at,

transforms as a gauge connection due to the presence of the

£ Lm

Consider the case of only local s.s. gauge transformations e.g. a”° = 0, ) = 0, then
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6e.l. = -1z Y.I‘. ¥ "real”
u H
im
8 =0
“u
and
= _ . = ir= Lm -l - i- wm
G(VuQ) = au+ Q + T|_EQ, o MEm-' faue}q t 3 oe, w ltdlm]aa QB
or

a - 1
6‘fu"35 -z‘w £

This implies

o . 1 wm
ﬁYu 3u€a + ¥ wu (alm’uﬂeﬁ
or
SYH = Due

Here Du is the usual covariant derivative instead of the derivative Dp.
Field strengths or curvatures which transform gauge covariantly may be defined by
[D,(h).D, (W] - i R (h)
where
D (h) = - ih ],
L) = (3 - ih)
We obtain

R (h) =ah -3 h -ilh.h]]

'3
Explicitly
Riﬂ{u] = R:T(w) = R‘muv(w}
R:v{Q3 =D, w: - D, v
R:v(P} =De, - D ei + % iu v* Y,

We may obtain the second order formulation of N = 1 Supergravity if we impose the constraint
R:v(P) = 0. This leads to

WP = PMe) ¢ kAT
" W n

A gauge covariant Lagrangian may be written as

= 1 Lm o 1 upvpo ¢ . . 1 am wv _ 1 uvpog
LSG e RHU(M] e, €, - T ¢ YooY Y, ch(Q] seR w(m)emeE 7€ 'uTSYqu!u
We may verify
¢(gauge) Lgo au[E "o Dpwaj o

Thus supersymmetry is not an internal symmetry but a space-time symmetry, like in the case of
general coordinate transformations &L = au(Lsu).
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7.3 - AUXILIARY FIELDS IN N = 1 SUPERGRAVITY

A minimal set of auxiliary fields was found by Ferrara and van Nieuwenhuizen and Still and
West, and a term calculus developed. The coupling to other matter supermultiplets is rather
straightfound with the tensor calculus (see P.van Nieuwenhirizen, Cargé€se Lactures,1%78).

~The appearence in the gange algebra of terms proportional to the field equations suggests
that the addition of auxiliary fields is the transformation rules might restore off-shell
closure. Another motivation feor including auxiliary fields is to maintain equal number of
degrees of freedom of fermionic and hosonic fields:
et 16 - 4 (general ccord. transf. invariance)
~ 6 (Local Lorentz gauge invariance)
= 6 degrees of freedom

!"u 16 - 4 {Local s.s. gauge invariance)
= 12 degrees of freedom.

There is a mismatch of 6 degrees of freedom., The auxiliary fields found are

l

A : s , P

{axial) (scalar) (pseuda-scalar)

A, is not a gauge field rather like v, a local vector field. The lagrangian takes the form

Z 2

_Am]

L=1@(e,u) + 1B (ev.u) - $step

is invariant under s5.s5. gange transformation.

m_XK- m
se“ 12-:7 ‘!u

1 1K 1
u K(Du+TAuY5)E-

Y

]
-
=
-

85 = iy - RS

GP'-%EYS'(-RC(W

A R LR
where
s el sciyP-i™A v
n X Y5 LA I

u Cov _ _uvpa _ i 1
R E Yg Tv(Dp ¥ Vi Ac Y ‘l‘p rx o, Yp}

Now
- - - a o o~ kM i = im : -
LGS{El)-GS{Ez)J $ = {GG(E 3o+ 55('5 'a) + GLEE e, *t @ 520 {S-—l'\rsp)sl_l} $
where
@ = w -1, AR
uim wem  F “uzmn ’
woo_ 1= u
bx) 7228 =1
The structure “"constants" now also depend on the auxiliary fields. The algebra closes off-

shell. We have really field dependent “structure functions". This feature is not present in
Yang~Mills theory or ordinary gravity.
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8 - SUPERGRAVITY AS GEOMETRY OF SUPERSPACE

If one assumes the differential geometry of superspace to the super-Riemannian the connection
with the space-time formulation of supergravity requires a rather delicate limiting procedure
in superspace., The reason is that the field equations in Riemannian superspace do not admit
as solution the flat superspace of ordinary global supersymmetry.

Wesw—and Zumino and Arulov, Volkev and Sorocka introduced a (non-Riemannian) different
differential geometry in superspace. The superspace of global s.s. comes out as a special case.
We follow Wess-Zumino approach.

M

A general affine superspace is parametrized by coordinates Z ={X™,8¥) where Xmarecummﬁng

space-time coordinates while 8" are anticommuting variables. The supervielbein matrix EM{Z) .
where A = (a,«) are tangent space indices and its inverse EA(Z) can be used to transform
world (super} tensors into tangent space tensors and vice versa. The submatrices E; and E:
are bosonic, "even" elements, wh11e E and Ei consist of fermicnic elements. We also in-
troduce super-connections ¢MA (Z) w.T. t (X,e) dependent local tangent space transformations.
We may define one-forms

A, M. A
% dZ Ey
B M B
L dz A
INDICES TANGENT SPACE CURVED SPACE
Yector a, b, ... m, N, ...
Spiner @, B, .- AB,...lu, v, ... M,N,...
.8
Internal|i, j, ... U,V

Here we take dX™ to be odd and de” to be even, the opposite of X" and &% one is still working
with Grassmann algebra. Similarly, E® anticommute with each other and with E*, while E®
commute with each other. Coordinate transformations in superspace mix X and & but in such a
way that the new X's are still even and the new 6's odd. Under an infinitesimal coordinate
transformation specified by parameter EM(Z) we have for scalar V(Z)

JORTO I W
]

- N
while for tensor TLM (Z):

N N L' N M!' ' + !
s6) Ty = 6% ag T e ot N e M Nen D By Wy N
where
N N
Uy Iy &
and the small indices in exponent are 0 or 1 according as the corresponding capital index

is bosonic or fermionic. We may also define densities D(Z) which transform as
5 5 . .
e = as(E 8) (-1} : scalar density,

The contractions are defined without extra sign if upper index is on the left. The extra
factor (-1}° is due to contraction of type AcB”. Since a density changes by a sum of terms
each of which is a derivative, the integral of a density over all of superspace is invarjant
under 6[5“}. Thus densities can be used as Lagrangians.
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We note that

d = gx _2_ 4 gow 3.
ax™ ag¥
Satisfies
a% = 0

More details are given in 1980 Eric Lectures by B.Zumino.

Covariant derivative of tangent space vector u, is written as
= B
Dy Up = 2y Yp ~ Oa Up
Imposing- -
A - A
DM (v uA) = aM (v uA]
and using graded Leibnitz rule for derivative
A _ A ma _A
DM (v uA) = (DM v} u, t {-1} v DM u,
we derive

A _ A ma B A
DM Ut o= gy Ut o+ -1) U dyp

For super-vielbeins

M _ M _ B M
Dy EA" = % BEp ~ #ya Ep
A _ A _1yn(b+m) B A
Dy By = 3yFy * (1) By txp
since M index is "super-scalar" w.r.t. local tangent space rotations. However, the bosonic

or fermionic nature of the index can not be ignored. We may define

then

- - B _ B
[De.Dpluy = = Repa™ ug = Tep
They define super-curvature and supertorsion tensors. Here | ,} indicates the graded commutator.

Applying graded Jacobi identities to this relation we obtain Bianchi identities, (A Z-component
notatioen is convenient to derive them).

F
AB

D

D D, _
+ T Tee - Rapg ) = 0

I
(aicy (Pa Tpe

F G Fy
(ASC) (Dp Rpep * Tap Rgep ) = ©

where is cyclic sum:

(aB)

X C(a*b]xCAB + (-1)3(P*Cypea

(AiC} ABC XABC T ey

e.g. 8 permutation of twe bosonic or one bosonic and one fermionic index gives rise to a
change in sign, while for two fermionic indices there is no change of sign.
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The geometric formulation, in an affine superspace requires general super-coordinate trans-
formation invariance. We restrict these transformation so that even nature of X™ and odd
nature of 8" is not changed. We restrict further the tangent space group, which is generally
a general graded linear group, to be a local (X,8) dependent Lorentz Group L. The super-
connections then satisfy the restrictions:

ab 1 -a _b-
*Mag T T ¢Mab(° }aB v @ = Cy™oy
¢M38 B ¢Maa =0
Thus *MAB takes valiues in the algebra of the tangent space group L. No comnections of typse

rﬁp are introduced and no expressions of type DyT, appear. Rather, only curls of type
(Dy Ty - Dy Ty} appear in the formulation; they are already temsorial.

Consider a linear transformation in the tangent space

A
B

ﬁvA = vB X

then

B
GuA = - XA ug

For example,

A cC ., A

Ay - C - - _ -
a(sB) =453 Xc Xp~ 4g X, Xg ]
Also
6{vA uA] = (ﬁvAj u, *+ vA (auA) = vB XBA uy - VA XAF Up = 0
For Lorentz group L in tangent space:
b _. b
X, L,
B _1.5b a, B
X" =g ly (op)g
a - a =
X, X, 0
Note that XuB describes the same Lorentz transformation as Lab when applied to spinors and

a 1 a-

Ub - "[[[Tht k) -l

Considered as a matrix in the last two indices, the curvature belongs to the algebra of the
tangent space group. Thus like ¢MAB we have

RaB,ab = ~ FaB,ba

1 ab
RAB.«B Y4 RﬁB,ab (o )uB

RaB,aa ” RaB,ca = °

The final restriction on the geometry consists in imposing constraints on the supertersion.
Tangent group restriction along with these restrict the number of component flelds in the
theory,
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They cannot be too stringent so as to allow only rigid superspace. Wess and Zumino impose

C - [
Taﬂ 21y )aﬁ

¥
¢ _ c
Tab

having TubT and TabT undetermined. The last cne is related to R.S. field strength
(a ¥} - 3, ¥)). The first one is suggested from rigid supersymmetry ().

(*) We found for the covariant derivatives
I ] 1 a
D icC @8- " 7 ('Y B)u aa
In the "curved" superspace (rigid supersymmetry)
= _ 3 3
Dy = (Bm,au) H [m > EE_)

and

so that

o a u
A AR . E¥ =0
By 55— = & Cop 59- - i Cup Ok 30—
B 1}
‘. BY =i Cup 5:
‘El:: aIll . % (Tae}u aa '

Now for any vector field A, we have

= M = m U = m
Ay Ea ﬁM " E, Am * Ea Au Ea Ay

Making use of

a m a m _ ,m
A Ea + A Eu = A
or
a mn a m _ ,m
A $, * A Ea = A
we find A Eum = & . Hence
a ol m - m
(v70)y 3, = (y78) E ;" a3, = (v'e), 3,
or
Bum = - % (Yme)a
m
8y 0

EM (rigid) =
A l..m . i
- glve), ICGBGB
Calculating ED&'DB} in the present case leads to vanishing curvature and only s non-vanishing

supertorsion Tzﬂ.
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Working ocut the Bianchi identities and using the constraints, all components of the super-
. d
A . . . P wb > Magy * R an
their conjugates (2-component formalism used).Gaé is hermitian and wasv totally symmetric.
We also find differential relations:

curvature and supertorsion can be expressed in terms of 3 superfields G

o _ € . £ . o . . -
D" W 2 DE G + D GrS R D* G = O« R
= [ = R
D W 8 D« R 0 R where DE D_.

G“é(x,a) in its expansion contains at 88 level a tensor which contains the Einstein tensar,
at 9885 level we find a spinor which is the Rarita-Schwinger operator (left hapd side of  the
R.5. equation). R(X,8) contains the scalar curvature tensor at 88 level. wuBY contains the
R,5. field strength at o = 0 level and Weyl conformal spinor at & level.

The auxiliary fields are also contained in the superspace formalism. They may be cbtained by
solving constraints on torsion. More details are given in Zumino's lectures at Cargése (1978)
and Erice (1980},
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