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1 - INTRODUCTION

The soliton concept has been widely used in particle physiecs to represent particles, even at
& classical level, mainly due to the localized behaviour of soliton type of waves as well as
its stability (l). It appears to us that solitons of matter in general relativity might be &
good representation divery massive objects, e.g., galaxies. Also the collision of two galaxies
sheres some common features with the collision of two solitons, for instance the collision
of two galaxies does not destroy the galaxies.

In general relativity, equations having soliton type of behaviour appear in the study of the
vacuun Einstein equations for axially symmetric waves with two degrees of freedom {2, 3).Also
the vacuum Einstein equations for stationary-axially-symmetric space-times have solitom (3,5)
type of solution (Erst equations). Due to the close relation between vacuum Einstein
equations for cylindrically symmetric space-times and the Einstein equations coupled with
irrotational-perfect fluids with p = W equations of state for the same type of space-times,
the concept of soliton also has appeared in this context (6}. Bur, in this last case the mater
does not have soliton behaviour, because the potencial that describes the matter obeys the
usual linear wave equation in cylindrical! coordinates.

The method used to solve the Einstein equations in the above mentioned cases are the inverse
scattering method (2, 4} and the use of Bicklund transformations {3, 5, 7).

In this paper we want to study the possibility of having matter propagating as solitary waves.
In the next section we present a set of well known equations that have soliton type of
solutions. In Section 3 we present a model of anisotropic fluid described by two perfect fuid
companents (8). In Sectlon 4 we particularize the above mentioned medel to yield matter evo-
lution equations, general enough to include as Particular cases all the equations exhibited
in Section 2. In the next section, we further particularize the model to arrive to equations
that present a clear soliton behaviour also these equations can be explicitly integrated.
And, finally in Section 6, we present a discussion of the obtained results.

2 -~ EQUATIONS WITH SOLITARY WAVE TYPE QF SOLUTIONS

In general relativity we have two types of field variables: the field variables associated to
the space-time, i.e,, the metric By and second.the field variables associated to the matter,
e.g. for a fluid we have pressure, density, flux velecity, etc. In this paper we shall study
a model of fluid whose velocity potencials obey evolution equations that are known to allow
spolitons as solutions.

Some well known scalar wave equations with solitary wave solutions are {1}
{sin [ sine-Gordon (2.1)
bop - b, = .1
te xx et Liouville

A two-dimensional generalization of the sine-Gordon equations is "

bpp = b + 7 SIn 2 4 - cos. ¢ wl.yly-o (2.2a)
sin~ ¢
2
Yoo = Frx = Tt (8%, - 6.¥ ) = 0 (2.2b)

sin ¢ cos ¢
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here we have introduced the notation ¢x = 3¢/ ox, ¢tt - 32¢/3t2. etc.

Another systems of equations are

(- mz) v = {-Zg2 lw]zw non-linear Klein-Gordon

2 (2.3)
e2g® |y|%y  H.ggs,
where [] = aZ/atz - Vz, also these two equations are attributed to the so-called ¢4 field
theory (1). And finally we have the equaticns
bpe ¥ b/t = b = F - 0Bye - Pl - vh) =0 (2.42)
(t el vy, - (t ol ¥, =0 (2.4b)
t't x'x )

This system of equations has been studied by many authors in the context of general reéativity
(10). It can be cast as

Iy = (2.5a)

-1 -
(Cyeg vy g~ v,y ),

with
$ ¥
vy =t (2.5b)

the special representation (2.5a) is the starting point of the inverse scattering method used
to solve these nonlinear equations.

Of course, the equations presented here do not exhaust all the known equations that admit
sgliton solution. But all of them are second order differential equations and their  geperal
covariant generalization are straightforward.

We note that the system {2.4) is the only one that does not contain a "mass term". This fact,
when dealing with the Einstein equations, is quite important, because almost always a - mass
term make the solving of the coupled Einstein equations very complicate, v.g., seldom one
can find particular exact solutions. We shall return to this point later.

3 - A MODEL OF ANISOTROPIC FLUID

In this section we present the main formulas of a model of anisotropic fluid with two-perfect
~fluid components recently studied by.the author (8). The main reason to study this model is
the appearence, in a very natural way, of two poterntialsthat can be "forced” to ebey soliton
type of equations.

The stress-energy tensor for the anisotropic fluid is formed from the sum of two tensor s,each
of which is the energy-momentum tensor (EMT} of a perfect fluid, i.e.,

T%:.v) =t ) + thv) : (3.1)

™) = (p + wy ubu’ - p g"’ C (3.2}

t* ) = (g + &) VPV - q g (3.3)
with

utu, = vuvu =1, vH g (3.4)
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and v" are the velocities associated to each fluid, p and q are the pressures
and w and e the fluids rest energy densities.

The vectors u¥

Making the transformations

u >yt = cos o uM o+ (513)1/2 sin o vV R {3.5a}
ptw

v o b o L (&;%}1/2 sin o u* + cos o V¢ {3.5b)
where
, o Demoeeyt/?
tg(2 o) = P W T e 2 v u, {3.6)
we can cast the EMT (3.1} in the form
™ = UY o+ stV (3.7
Sz (g - m) XM xXV- Ayt - UM uYy (3.8)

The quantities U" , x¥, p, and 7 are the fluid flux velocity, the direction of anisotropy,the
fluid rest energy density, the pressure along the anisotropy direction and the pressure on the
perpendicular plane to X" respectively (8). These quantities are defined in terms of the two-
fluid variables as

L u*”/(u*“u*a)lfz . (3.9)
O T G A LI L . (3.10)
p =T U U = (p+w) wul-(pra) . (3.11)
g = T' X, X, =p+q- (q+e) v vk , (3.12)
T=p+q . (3.13)
Note that
ilg U= - x¥ X, =1 (3.14)
x¥ u=0 (3.15)
-k U, =0 , (3.16)
sVox, =-ox¥ (3.17)
Alsc we have
N R 7L+ weare)l s amaare) [(utv)2-031/2 (3.18)
o = - 7 (w-pre-q) + 3 [(p+w-g-e)7 + 4(pew) (gre) (uy) /2, (3.29)

In general one need to add supplimentary conditions to close the model, this point was tested
in some detail in the first paper of Ref. 8,
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4 - THE MATTER EVOLUTION EQUATIONS

The equations of motion for the matter are obtained in the usual form, i.e., from the 'con-
servation law',

v
™. =0, (4.1)
We shall "project" the equation (4.1) in the directions of u¥, v" and in the directions that
are perpendicular to both u" and v ., To perform this last projection we introduce the
projection eperator

B oo oM. 1 M Yy - % My |
H) = &) m I:u u, + Vi - wtv (v v ouy )- . (4.2}
&

Some properties of this operator are

VooV oot g -
B v H) u 0 .3
u a -m u - -
H, H, =K, Huv Hou (4.4)
. ,
Hy = Z; det |H:| =0 . (4.5)

Transvecting (4.1) with u, vu and Hz we get, respectively

[}

(pow), uV+ (p+w)u¥; + (q+e) v uv s (qre)vhi v¥u v (aredulv v¥; - (a+p) . u= 0, (4.6)

AU -3 v v v
(pow) . ulv e (powduM s uVv s (pewduly u¥s v (qre) vt (ared vV (prad i vt = D, (4.7)

LA W, yoo a
(prwlut; o H +(qre)vo s H - (q+p), H = 0 . (4.8)

We shall specialize the velocity of esch fluid component in the following way

)1/2

u, =4, /0, 4" . (4.9)

- 1 O 1/2
Y, V.u/(?.u ) . (4.18)
In other words we impose to each fluid component the usual condition of irrototionality.
From {4.8) - (4.10) and (4.3) we get
* W 1By q +e B ¥ oL M
E%__;:i (¢.B¢ }’u * T (¥, p¥ ).‘1 Hy 2(P+QJ,D H, (4.11)
‘a

‘u -

This last equation will be satisfied identically if we choose

perw=F (6.¥) ¢, ¢ _ (4.12)
a+e=H@Y ¥, ¥ (4.13)

sq=3 |Fe, %+ HY, v - G( ¥ (4.14)
P q '2' - ‘o a ¢' | ] .

where F, H and G are arbitrary functionsof the scalar functions ¢ and ¥ .

The evelution equations for ¢ and ¥ are obtained directly from (4.7) and (4.8), we find
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B 1 By 1% Ly 0@y yiB Lo, ,
Fo.q0°" o +Ho "o, p [ ¥+ 7F.50 00,007 2H, 07%v v Ben, w0 By 0 16, 000 20 | (415)

e O vere Bo g [T er g %y, v B S wiSe o Ber, 0% v B de v a0 e
where, now {]¢ = ¢,a'“, etc. And solving (4.15) - (4.16) for [J ¢ and [J¥ we get

FQe - 3 H¥, 0% - 3 Fyt' %0 - F,P¢'B\y,B -3 g, _ (4.17)

HIJY = 3 Fod. 0% - FHY Oy, - Hyo, ¥ - 3 6, (4.18)
where we have introduced the notations, H¢ = 9H/3¢ By = 3H/3Y |, etc. —
From (4.12) - (4.14) we have that the EMT (3.1) can be written as

T,y = Fé, 0, + BY, ¥, - 3 suv (B, o' % + Hw,Bv'B - Q). | (4.19)

It is interesting to point out that the evolution equations (4.17) and (4.18) as well as the
EMT (4.19) can be obtained, in the usual way, from the Lagrangean density

L = 3/7g(Fe, ' + Wy, ¥'% - G) =/TF(p + Q) . (4.20)

In Ref, & we study a particular case of fluid in which the condition {4.1) was implemented by
tu“(u);v - t“e(v};v « 0, ie.e. we had a kind of minimum eoupling between the fluid components
Now with the specifications (4.12) - (4.14) we have a different kind of coupling, i.e.,
tu“(u);u = = tu“(v);v # 0, thus the fluids interact through a force density j' = t*V;y
different from zero.

The particular choice of the physical variables given by (4.9), (4.10) and (4.12) - (4.14)tel
us that the one fluid variables are related to the potencial ¢ and ¥ by

" By1/2 H 1/2 .
uu[¢.s¢ ) cos 2 oo, ¥ 6] sin 2 LT (4.21a)
» Bl/z O (E\l/2 .
LASITA NS () sin 2 ¢, + cos 2 Yo, o (4.21b)
ned {f¢,a¢'“ + By, ¥ -G (4.22)
m 172
§ = % + %-l}F¢,a¢‘“ - Hv.uw'“)z + WFH[¢,a?'u]2 (4.23)
G=p -G . (4.24)
The special case G = 0 will be of particular interest due to the mass character of G, as
indicated by (4.20). Also, in this case, o = p, i.e,, we have a "stiff" equation of state

along the anisotropy direction.

The Lagrangian density (4.20) is sufficiently general to yield any of the equations presered
in Section 2. But, if we want to solve the Einsteins equations coupled to the EMT (4.1%) we
find different types of difficulties. The Einsteins equations coupled to the EMT ({4.19) are
equivalent to
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Ry, = = (Fo, 0, + WY, ¥, =38, G . (5.1)

v uv

Let me study first one of the apparently simpler cases of (5.1}, the particular case,
Fx«1 ,H=o0, G=sin®¢ (5.2)
for the plane symmetric metric,

2

ds® = 2 ew(“’v] dudv - eu{u,v) (dx2 + dyz} . {5.3)

In this case the equations (5.1) reduce to

Wew %’ 'IJE T My W, mo 1’3 (5.4a)

woo v e w = -t ) (5.4b)

B tw, o+ % HLU_ T - g+ % e smz ¢

uy_ tugn. =3 e¥sinf o (5.4c)
where, 9, = 3¢/du , w_ = dufdv, etc. The integrability condition (4.17) in this case gives

Ze,_ + nd_ *u_d, = - e¥ sin ¢ cos ¢ . {5.5)

Taking w = w = 0 in (5.5) we see that this equation is equivalent to the sine-Gordon equation,
fact that justifies our choice (5.2)., The system of equations (5.4) - (5.5) are terrible
non~linear and too coupled for the pourpose to find exact sclutions, even a simple one. The
origen of the difficulties is the term G = sin2 ¢, that at the same time is the basic term to
have soliton solutions (11).

If we want to reproduce any of the equatiems (2.2}, (2.3) or the Liouville equations, using
this formalism we shall encounter the same type of difficulties as in the former case.

Let us take the following choice of the functions F, H and G,
Fa3a¢? , H=Za¢® | G=0 (5.6)

where a is a constant. Then the Einstein equations (5.1) can be cast as

-2 2
Ry, == 507 e, 0,0+ 0%y, v, ) (5.7)

Now we shall study this field equations for the axially symmetric metric
as? - e¥ (at? - av?) - t(fde + hdz)? - (v/€) d2? (5.8)
where £, h and w are functions of t and v only. Note that letting £ + 1 and h + 0 in(5.8) we

get the metric (5.3), modulo a trivial change of variables. From (5.7), (5.8), (5.6), (4.17)
and (4.18) we get

2.2 -2

B - t7% = —agehel + ofv]) (5.98)

Moo T a1 T Wose * E Eg +E
- Wop * Wiy - oy * E L+ 202 = ca(e7Zel + oDy | (5.9b)
S V2 £260E) + £ongh) = -a(eTlegey + #7¥oY D)

£00 * £oje - £11 - (g - £/€ - £ (b} - nD) =0, ' (5.108)

(e£fng)g - (tfzhl)l =0 | (5.10b)

00 * bose - t11 - (o8 - 821/e - oP0vl - ¥ (5.11a)
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(rel¥, - (tolvy, =0 . (5.11b)

m

where we have made use of the notation Wo
{5.9) for w we get

a¥/at, £, = 3f/3t , etc. Solving the equations

Wwa-% Btel (5.12)
s[_h.f,q:,ﬂ - n[f,ﬂ + arz[q,,ﬂ . (5.13)
n[f,h zr% {'_f'z(f% + £2) + £ (h] hf)_|dt + 2|:f_2f0f1 " fzhbhl_ dr} (5.14)

The integravility conditions for & |¢,¥| and £|f,h| are the equations (5.11) and (5.10). But
equations (5.11) and (5.10) are completely equivalent and they are equal to (2.4). Thus any
set of particular solutions to (2,4) or better to {2.5) will give us solutions to ([5.7)with
sa W given by (5.12). i

In the present model we can have propagation of the metric coefficients £ and h, as well as
propagation of the matter variables ¢ and ¥ as solitary waves. The metric and the matter
solitary waves do not need to be equal e.g., we can have the metric coefficients propagating
as a one-soliton and the matter as an n-soliten.

The general formulas (4.22) - (4.24) for this particular case reduce to
(5.15)

R S A [T PR (R e I

T .l -2 1/2
omp=f 8 T [e720l - oh - o2 vf - ¥D] e e gty - 4D (5.16)

These relations tell us that if we have a localized ¢ and ¥ we can have a localized o= o and
T, i.e., a model of a massive body.

€ = DISCUSSION

The general formalism studied in Section 4 was particularized in Section 5 in such a way that

we found soliton equations for the potencial ¢ and ¥. We belive that other possible par-
ticularizations of F, H and G will also yield soliton equations. The case G = 0 is paricuarly
interesting as stressed along the paper, we see that in this case the Einstein equations

(5.1) for the axially symmetric metric (5.8) can be formally integrated. Particular F and H
can made the system of equations (4.17) and (4.18) to admit solitary waves as sclutions, they
can be found by discovering if the resulting system of equations have a BHcklund transfrrmation
or & Lax pair.This point is under active consideratiom by the author using Clairin method (12}

Some physical aspects of the two fluid medel, as well as the "choice™ (4.12) - (4.14) need to
be better understood in order to apply the model to more realistic situations, We are also
working along this line,

The Lagrangean density (4.20) is interesting by itself, we have that many models of field
theory are particular cases of (4.20), e.g., the Higgs equations presented in Section 2. Thus,
all those models have a fluid interpretation given by (4.21) - (4.24) .
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