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TECHNIQUE AND CONSTRUCTION OF EXACT SOLITON SOLUTIONS

1.1 - INTRODUCTION

The purpose of the present paper is to describe a practical method (equivalent teo the inverse
scattering problem technique), allowing one te obtain explicity large classes of new  exact
solutions of the vacuum Einstein equations for the case when the metric tensor depends oy on
two variables, if simple particular solutions of the equations are known. Moreover, if
developed’ further, the method allows one in principle to approach the problem of finding, in
a certain sense, "all the solutions” of the equations of gravity for the two-dimensional case
under consideration, and may lead to a solution of the corresponding Cauchy problem.

Fer definiteness we assume that the metric tensor depends on time and on one spacelike variakle;
this corresponds to wavelike and cosmological solutions of the gravitational equations. The
case when both variables are spacelike (corresponding to stationary gravitational fields)will
not be considered separately, since the corresponding solutions can also be cbtained from the
analysis given here by imposing certain boundary conditiens and carrying out the required
complex transformations, Moreover, we limit ourselves to that special {albeit quite
widespread) case of two-dimensional metric where the interval has the form(*)

- dsz

= £(-ar? + a2y + g axPax® 1.1}
Here the functions £ and Zab depend only on the variables t and z. For the coordinates we
adopt the notation (xo, xl, xz. x3) =(t,x,y,z). In this paper the Latin indices a, b, c, d
take on the values 1 and 2 and refer to the variables x and ¥. We study this metric for the
case of a vacuum gravitational field, when the Einstein equatiens reduce to the vanishing of

the Ricc¢i tensor.

A metric of this kind was first considered by Einstein and Reosen (1937) for a diagonal matrix
SN when the Einstein equations actuwally reduce to one limear eguation in cylindrical
coordinates, The inclusion of the off-diagonal component (**) g,; changes the situation
radically, and converts the Einstein equations inte a complicated essentially nonlinear
problem. Equations for such a metric were first considered by Kompaneets (1958), who noted
some of their general properties. In the past twenty years various authors, using different
simplifying assumptions, have obtained a number of exact nontrivial solutions for a metric of
the type (1.1} or its stationary analog (a large fraction of these results is listed in the
review articles (Frolov, 1977; Belinskii and Xhalatinikov, 1969), but no regular integration
method has been found.

From the physical point of view the metric (1.1) and its stationary analog have many appli-
cations in gravitation theory. Suffice it to say that to this class belong the solutions for
the Robinson-Bondi plane waves, cylindrical- wave solutions, homogeneous cosmological wmodels

{*) V¥e use a system of units where the speed of light is one. The four-dimensional metric is
written in the form -ds2 = gikdxldxk. where 25k has the signature ([-+++).

(**) In the language of weak gravitational waves this corresponds to the appearance of a
second independent polarization state of the wave. For a stationary analog of the metric
{(1.1) such a generzlization means (under reasonable boundary conditiens) that rotation
has been included.
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of Bianchi types I through VII, the Schwarzschild and Kerr solutions and their  NUT-general-
izations, Weyl's axially symmetric solution, etc. As applied to cosmology the metric (1.1)
was discussed in a paper by Khalatnikov and one of the present authers (Belinskii and
Khalatnikov, 1969}, where it was shown that such a two-dimensional metric describes a general
cosmological solution of the Einstein equations with a physical singularity on portions of
the so-called "long eras”. In the paper of Gowdy (1974) the metric (1.1) was used to find new
vacuum solutions representing clesed cesmological models. Recently there has been consideralie
interest in inhomogeneous cosmological models centaining singularities having simultaneously
a spacelike and a timelike character. Such models have recently been discussed on the
basis of the metric form (1.1) in the paper of Tomita (1977}. All this shows that, in  spite
of its relative simplicity, a metric of the type (1.1) encempasses a wide variety of physical
cases, and that a method for integrating the corresponding Einstein equations could signifi-
cantly move forward cur understanding of various aspects of gravitation theory.

It turns out that this case can be successfully treated by means of the inverse  scattering
problem technique in its modified form (Zakharov and Shabat, 1978; Zakharov and Mikhailov,
1978). Moreover, Mikhailov and Zakharov (1978), have given a detailed exposition of this new
method of integrating nonlinear differemtial equations, applied to a system which is quite
close to the one to which the matrix gab(t,z) is subject in the present paper. We explain the
relation., The Einstein equations for the metric (1.1) are most conveniently investigated in
light-cone coordinates {,n defined by the transformation

t =% -, z =g +n. 1.2)

In the sequel we shall always dencte by g the two-dimensional matrix with elements 2,1 (the

two-dimensional block of the metric tensor (1.1)) and for the determinant we adopt the
notation
2
det g = a”. {(1.3)

The complete system of Einstein equations (in vacuum) for the metric (l.1)decomposes into two
groups of equations (cf., e.g., Ref. 5)}. The first group determines the matrix g and can be
written in the form of a single matrix equation:

1

Jo, =0 . {1.4)

. _1 -
(eg,p@ Doy * (0B, 8 z

The second group expresses the metric coefficient £(t,x) by quadratures in terms of a  given
solution of Eq. (1.4) via the relations

(ln a)
(inf), = mﬁ-{ + 1“th sp A%,

(1n =) 1 2
(Inf), = L S A
n TIn u)u duuh

(1.5)

where the matrices A and B (introduced for the convenience of the subsequente analysis) are
defined as follows:

A= -agtg'l : B = ughg'l . (1.6)

It is easy to establish (cf.Ref,5) that the integrability conditions fer the equations (1.5)
are automatically guaranteed if g is subject to Eqs. (1.3} and [1.4}.

1f one does not consider Eq. (1.5), the equation (1.4) has formally nontrivial solutions even
if o 5 1. That was the system of equations for a matrix g (in general complex and nonsymme i)
which was investigated in Ref. 9 where its integrability was proved and a procedure was
described for the determination of the soliton solutions. Physically, such solutions  are
related to two-dimensiomal classical relativistic models of the theory of chiral fields.

However, this case (o = 1) is not mon-trivial when applied to a gravitational field described
by the metric (1.1). It is easy to show (cf.Ref.5) that the presence of the additicnal field
component f£(t,x) related to the matrix g via the relations (1.5) leads for o =-1 only to the
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trivial solution, i.e., the Minkowski metric if one requires that the metric be real and have
a physical signature.

In connection with this circumstance, the technique developed in Refs. 8.9, requires some
generalization, since one cannot apply it literally to the problem considered here. As will be
seen in the sequel, the general idea of the method remains the same: it is based on a study
of the analytic structure of the eigenvalues of some operators (as functions of a complex
spectrsl parameter 1), operators which can be associated according to a definite law to the
system (1.3), (1.4) (the sscalled L-A pair). In particular, for solitonic solutions Eqs.(1.3)

and (1.4) a fundamental role is plaved by the structure of the poles of the corresponding
functions in the X plane. For an a different from a constant the equations (1.3) and (1.4)
require the introduction of generalized differential operators thus entering into the L-A
pair, depend on the function a{f,n), and contain differentiations also with respect ®© spectral
parameter. For soliton solutions this leads to "floating" poles of the eigenfunctions, and
instead of stationary poles ln = const (as was the case in Ref. 9) we shall have pole tra-

jectories An(c,n].

We try to develop our analysis in such a manner that the reading of this article should not
require turning to all previous papers, if one is interested mainly in the results of the
described method.

1.2 - THE INTEGRATION SCHEME

We now pass to a systematic investigation of Eqs. (1.3) and (1.4). Taking the trace of Eq.
(1.4) with account of the condition (1.3) yields

%n * 0 (z.1)

Thus, the square root of the determinant of the matrix g satisfies a wave equation (this
result was already noted in Refs. 1,2) with a solution

a=a(z) +b (n}, (2.2)

where a(z} and b(n) are arbitrary functions. For the sequel we shall need a second hdependent
solution of Bq. (2.1), which we denote by 8(z,n) and choose in the form

B = a{t) - b{n) . (2.3)

It should be understood that the metric (1.1) admits in addition arbitrary coordinate
transformations z*' = fl{z+t)+fz(:-t), t' = fl(z+t]-£2[z-t) which do not affect the conformally
flat form of the metric f(-dt2 + dzzj in {1.1). By an appropriate choice of the functions of
£1 and £, one can bring the functions a(z) and b{n) in (2.2) to a prescribed form. If, for
instance, the variable a(g.n) is timelike (corresponding to solutions of cosmological type
(Belinskii and Khalatnikov, 1970)) the coordinates can be chosen in such a manner that a = t,
B =z, It is however more convenient to carry through the analysis in a general form, without
specifying the functions a(z} and b(n) in advance, and turning to special cases as the
necessity arises,

It is easy to see that Eq. (1.4) is equivalent to a system consisting of the relations (1.6)
and two first-order matrix equations that define the matrices A and B. From Eqs. (1.6) and
(1.4) follows the first obvious equation for A and B:

A“ - E{ =0 . (2.4)

The second one is easily derived as an integrability condition for the relations (1.6) with
respect to g. We obtain in this manner

-1 _ -1, -1,
A,n + Bt * [A,B:l 4, « A a; o B=0 [2.5)

(here and in the sequel the sguare brackets denote the commutator}.
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The main step now consists in representing (2.4) and (2.5) in the form of compatibility con-
ditions of a more general overdetermined system of matrix equations related to an eigenvalue-
eigenfunction problem for some linear differential operators. Such a system will depend on a
complex spectral parameter (which we denote by 1), and the solutions of the origind equations
for the matrices g, A, and B will be determined by the possible types of analytic structure
of the eigenvalues in the A plane. At present there does not exist a general algorithm for the
determination of such systems, but for the concrete case of Bqs. (1.3) and (1.4) this can be
done. For this purpose we introduce the following differential operators:

Zay X 2o, 3
Dy =3, 1_-;6 B .+ Dy = +ygoy {z.6)
where the synbol % with a subscript denotes partial differentiation with respect to the

corresponding variable and A is a complex parameter independent of the coordinates £ and n.
It is easy to verify that the commutator of the operators Dy and D, vanishes exactly when o
satisfies the wave equation. Thus, taking (2.1) into account we have

[D1 . n2:| -0 . (2.7

We now introduce the complex matrix function ¥(X,%,n)} and consider the system of equatioms:

- A' - B

DY =gz ¥ . DY = ao ¥, (2.8)
in which the matrices A and B do not depend on the parameter X and are real {the same Te-
quirements are satisfied, of course, by the real function a). It then turns out that  the

compatibility conditions for the equations (2.8) coincide exactly with the equations (2.4)and
{2.5). In order to see this it is necessary to operate with D, on the first of the equations

{2.8) and with D; on the second one, and then subtract the results. On account of the
computativity of D, and D, we obtain zerc in the left-hand side. In the right-hand side we
get a rational function of A which vanishes if and only if the conditions (2.4),) (2.5) are

satisfied. It is easy to see that a solution of the system (Z.8) guarantees not only that the
equations satisfied by the matrices A and B are true, but also yields a solution of the
relations (1.6), i.e., directly the sought matrix g(g,n) that satisfies the original equations
(1.3) and {1.4). The matrix g(Z,n) is nothing else but the value of the matrix function
¥(x,t,n) at the point % = 0:

g(t,n) = ¥(0, g,nl. (2.9)

Indeed, in this case the equations (2.8} for A = 0 (for solutions which are regular in the
neighborhood of A = 0) duplicate exactly the relations (1.6). The matrix g(z.,n) must, of
course, be real and symmetric, Below we shall formulate for the selection of the sclutiocns of
the equations (2.8) additional restrictions that guarantee this requirement.

The procedure of integration of the equations under consideration assumes the knowledge of at
least one particular solution. Let 30{;.n) be such a particular solution of the Einstein
equations (1.3), (1.4) in terms of which by means of Eq. (1.6) one can determine the matrices
Ay(%.n) and By(g,n), and with the help of (2.8) one can obtain the corresponding function
Yo(3.5.n). We now make in the equations (2.8) the substitution

Y- x¥, - (2.10)

Taking intoe account the fact that Y, satisfies the system (2.8), we obtain the following
equations for the matrix x(x,Z.n):

1
DyX = yog (AX - XAg) » DX = yrg (Bx - xBg) - (2.11}
¥We now indicate a&ditional conditions which need to be imposed on the matrix y in order to

assure the reality and symmetry of the matrix g. The first consists in requiring the reality
of x on the real axis of the X plane (the watrix Y must also satisfy this conditions}. This
implies

Ls



-57 -

x(X} = x0), F(X) = ¥(1). (2.12)
(Here and in the sequel the bar denotes complex conjugation. For the sake of brevity we often
do not indicate the arguments ¢ and n» of the functions). The second condition is less trivial
and is related to the following invariance property of the solutions of the system {z.11).

Assume that the matrix x()) satisfies the equatioms (2.11). Replacing in the argument * by
azll we form the new matrix %' (A):

. | -
x'(A) = gX (az/l)xol
(the tilde denotes transportation of a matrix). A direct verification convinces us that the

new matrix x'(i} also satisfies the equations (2.12) if g is symmetric. We shall assume x'(Q)
=x{3) which guarantees the symmetry of the matrix g. Thus, this condition takes the form

g = x(a?/0) gy X(A). (2.13)
Moreover, it is necessary to require that for X + « the matrix ¥(A,Z,n} tend to the unit matrix

¥(=) = I. (2.14)
These relations imply

g = x(0) g, (2.15)
a Tesult which also follows from the conditions (2.9) - (2.10).
Thus, the preblem now consists in solving the system (Z.11) and in determining the =matrix X
satisfying the supplementary conditions (2.12), (2.14). It is necessary to note the following

important circunstance. The solution g({,n) must also satisfy the requirement det g = af. We
assume that the function «(f.n) is the same for the particular solution g, and for the gener-

alized g (¢ is a given solution of the wave equatiom (2.1}), and that by definition the
particular solution also satisfies the requirement det g, = al. Therefore, as follows from
(2.15) one must impose on the matrix x yet another restriction: det yx(0) = 1. It is more
convenient not to worry about this conditiom during the calculations, and to use a simple

renpormalization of the final result in order to obtain the correct quantities. The latter
will be called the physical quantities. It is easy to establish the legitmacy of this pro-
cedure from Eq. (1.4). If we had obtained a solution of that equation with det g ¥ az, the
trace of (1.4) indicates that det g satisfies the equation

1 ) - N
[u( n det g],:]‘1 + [u{ln det g]“LI\; 0 {z.16)
If one now forms the matrix sph:

gpp = cldet 5 /2 g, (2-17)

it is easy to see that the latter again satisfies the equation (1.4¢) and moreover the con-
dition det 'pg - uz. The matrices A and B are also subject to appropriate tranzformations:

Ap=A-a {ln [a (det g)'ln:l}.: I,

. (2.18)
Boh"Bre {1n [a {det g]-lﬂ]].n I,

where A and B are defined in terms of g according to (1.6} and “ph and B

oh are defined by
the same formulas but in terms of the matrix 3ph‘

1.3 - CONSTRUCTION OF THE SOLITON SOLUTIONS

The solutions for the matrix x(X.Z.n)are constructed by means of the method described inRess.
8 and 9. In the general case the determination of x reduces to solving the Riemann problem
of snalytic-function theory, which in turn reduces to the solution of a linear’ integral
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equation. We shall return to this in (I.6) and show there that the solution is determined by
the analyticity properties of the matrix y in the complex X plane, and in general represents

the sum of a soliton part and a nonsoliton part. In this section and in (I.4) and (I.5) we
consider the purely solitonic solutions when the nonsoliton part is absent., This problem does
not require the use of the Riemann problem {in fact it is a trivial special case of the

Riemann problem) and can be explicitly solved to the end.

The existence of solutions of the soliton type is due to the presence in the ) plane o points
of degeneracy (mon-invertibility) of the matrix y, i.e., points at which the determinant of
x vanishes in such a manner that the inverse matrix x'l has at these points simple pdes.Thus,
the purely solitonic solutions correspond to the case when x'l is representable by a ration-
al matrix function of the parameter )\ with a finite number of poles (we assume them to be
simple) and which for 1 + = tends to the unit matrix, as required by the condition (2.14). The
matrix x has the same properties, as can be easily seen from the supplementary condtion (2.13)
Indeed, (2.13) implies that if x has n poles at the po:nts A= uk(c n) (k=1, ..., n) then
¥~ alsc has n poles at the points °k(c n) where Vp * & /“k' Moreover, it follows from {2.12)
that the poles of the matrices ¥ and ¥ "1 are either on the real axis of the A plane, or are
paired: to each complex pole v ler v} corresponds the complex-conjugate pole ﬁk(or §k). For
uniformity in our calculation we shall assume that the poles of the matrix yx are complex and
that among them there are no coinciding ones (the equations for the case when the poles are on
the real axis can be obtained by taking an appropriate limit).

It follows that the matrix x has the form:

Pl

x=1 "‘kﬂ =) .
_ s _
(3.1)
. ;
x-l =1+ + __:") »
x o A%

where the matrices Rk and Sk (as well as the numerical functions Yy and vy = azfuk) no longer
depend on A. The matrices S, can be expressed in terms of Ry by means of the obvious relation
xx'l = I, However, in the sequel we shall deal mainly with y and the explicit expressions for
8y will not be needed.

It can be seen from (3.1) and {2.15) that the solution of the equations (1.4} for the matrix
gl{t.n) is

R -
gz.m = [1- 43 G » ;:‘—‘)| %o (3.2)

We now determine the matrix Ry explicity. For this it is necessary to substitute (3.1) in
(2.11) and to satisfy these equations at the poles ) = uk(t.n). First of all it can be seen
that these equations determine explicitly the dependence of the position of the poles on the
coordinates [ and n, i.e., the functions uk[c.n]. Indeed, the right-hand sides of (2.11) at
the points x = Uy have only first-order poles, whereas the left-hand sides D,y and Dyx have
second order poles. The requirements that the coefficient of the powers (i - uk)-z vanish
in the left-hand sides yields the following equations for the pole trajectories uk(;.n):

Za, u F{. AN

ukc..ﬁ_! . ukn._ﬁl_k (3.3)
¥ U'l-lk 1 “’uk

These equat1ons are invariant with respect to the substitution B - & /“k‘ i.e., the functien

vy = a /“k also satisfies (3.3). The solutions of (3.3) are roots of the quadratic equation

{in ).
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al/y s 28+ 2 = Zuy (3.4)

where wy are arbitrary complex constants. It is easy to see that for each given v Eq.  (3.4)
yields two solutions: a pole uk(c n} for the matrix x and a pole vp " a /uk for the  matrix

X

My = wp - B - [(wk-ﬁ)z-uz]uz .

(3.5)
v*m-B*r[ '3)2"31,2
kT 9% Aae _
Rewriting the equations (2.11) in the form
- A -
xé; = (D) x)x T x xé% b
B (3.6)

B =1 -
m'(szJx +xr_%x1 s

we note that in order that they be satisfied at the poles A = by it is necessary that the
residues at these poles vanish in the right-hand sides of (3.6}, since the left-hand sides are
holomorphic at the points X = tp+ This requirement leads to the follewing equations for the
matrices Ry:

A
Ry ¢ Lo + Ry ukEu Xl =0,

1 B 1 (s.7)
Ry X000+ R plg X THOyd =0

where use has been made of the relation
R xliuy) =0 (3.8)
k X Uy N .
following from the identity xx'l = I (considered at the poles A = “k)' It can be seen from

{(3.8) that Rk and x I(uk) are degenerate matrices for which the elements can be written in
the form

Ry = 2 2 L [x )] = o 2R (5.9)
then (3.8) signifies that
lgk) q;k) -0 . (3.10)

Here and in the sequel summation will be understood over repeated vector and tensor indices
a, b, ¢, d (they take the values 1, 2).

Substituting {3.9) into (3.7) we obtain the eguations wich determine the evolution of the
vectors 'a

(Ag)
a®) o 20 —0lle) (D) L

X (B} o . {3.11)
2 o D o ,
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A solution of these equations is easily expressed in terms of a given particular solution '!0 of
the equations (2.8). Introducing the matrices

Mt (e, T Y O G (3.12)

it is not hard to see that they satisfy the equations

AO BO
Mgt Mot Mottt (3.13)

Thus, a solution of the equations (3.11) for the vectors nik) will be (*):
k K '
mg ) - méb} (N'k)ba {3.1‘)
where the -ég) are arbitrary complex constant vectors.

There remains the task of determining the vectors ngk] and thus the matrices Rk' This can be
done by means of the supplementary condition (2.13} that must be satisfied by the matrix  X.
Substituting (3.1) into (Z.13) and considering the relation obtained in this manner at the
poles of the matrix x(a®/)), i.e,, at the points X = v, = azluk, we reach the conclusion that
the matrices Rk satisfy the following system consisting of n algebraic matrix equations:

A L B s |

n B R
R, &g [; +1h (i + .__L):| =0 {3.15)

where k = 1, ..., n. Substituting the expression (3.9) for the matrices R, we obtain a systea
of linear algebraic equations for the vectors n, " :

(1) _(k =[1) (k
o Vs @y, 1 BN G ja) L0,
5 — a 1l ™ PN a ¢ Boleca

. 1 Feliy = W

(3.16)
: 1Y=(k «(1)=(k

n Ié )lé ]('chb A o '{ )'é )(go)cb Al .- 3Ky
h — 5 "By 1 S - 5. 8 Bc "‘Bolea -

% i | k ¥

This completes the determination of the matrices Rk and from (3.2) one can now find a sdution
for the metric tensor g(z.n). We also note that from Eq. (3.6) one can obtain explicit
expressions for the matrices A and B by equating the residues in the left-hand and right-hand
sides of these equations at the poles X = ¢ and X = - a. As 3 result we obtain:

Ry R ]

+
() * (a5 ”)

A= 2a;, { E } -l(a) + x{a) A “1ta)
A L9 | X x{a) Ay X s

(3.17)

R, .
o L } x'lt-c) + x(-e) By x leea) .

n
B = Zao, {4 + =
h 1R _(n*uk)z (a+uk)z_

Calculating the traces Tr Az and Tr Bz we obtain from (1.5) the component f(;.,n)of the matric
tensor by quadratures. We note, however, that for those simplest solutions which we consider
in the following sections the corresponding indefinite integrals encountered in the

(*) In reality, im the solution (3.14) for the vectors ugk] there may also be arhitrary compiex
factors depending on the index k and the coordinates z,n . However, such factors reduce
to an inessential renormalization of. the vectors wm; and disappear from the final
expression for the matrices Ry we therefore set them equal to one.
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calculation of f can be evaluated explicitly and the solution can be expressed in terms of
the particular solution gy fo. as well as the quantities ¥y ngk) in algebraic form.

L& - SIMPLE SOLITONS

In this section we consider soliton solutions for the simplest case: when the matrix y has
only one pole. If there is only one pole it can be situated only on the real daxis @ complex
pole has always a complex-conjugate partner).

All the rtesults are easily obtained from the preceding general analysis. The position of the
pole is determined by the equation X = yu{z,n), where u is real and is expresséd in terms of o
and 8 according to Bq. (3.5}):

w=uw-8- [(w - 0? - a2:|1/2 : (4.1)

hers w is a real arbitrary constant. For p to be real the functions a and B must satisfy the
inequality

(w-8)%>a? | (4.2)
the sense of which will become clear later. The matrix y has’thgiform
x =1+ 2R/(X - u) . Ryp = . (4.3)

where the vectors m, and n, are real. As follows from Eq. (3.12) and (3.14), the vector =, is

determined by the equations
-1
By - ’Ub ubl ' M= t:"'[) )1 -y (4.4)

in which the arbitrary constant vector Bg), BUst be taken to be real and the matrix M will
automatically be real on account of the conditions (2.12) and the reality of p. The vector n,
is easily obtained from (3.16) (assuming that all the quantities in them sre real and taking
into account the fact that there is only one pole):

’ 4 2
ng = (0% - o) my(ggly,/20 nmy(8p)g - (4.5)
Furthermore it is convenient to introduce the matrix P with the elements:

Pab = ®c(8p)cq /B By (89l g - .. (4.8)

From this definition it is clear that P has the properties

2

pP2ep, detP=0 ,T . P=1 |, “.n

Now it is easy to express the matrices x and x 1 in terms of P:

2 2 2 2
o= ~1 - a
x =1+ — P, x =1+ E}h———— P . (4.8)
¢ Hj a - ap

The equation (2.15) yields the matrix g:

-

g-[l-u_uz—P)gc '

s

whence (taking account of det g, = nz) it follows that

det g = ulluz .
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Thus, our solution does not satisfy the necessary condition det g = az and we must renormalize
it, going over to the physical values in which we are interested, according to the procedure
described at the end of I.2. We will denote (as in I.2) all physical quantities which yield
the £inal result by the subscript "ph". In agreement with Eq. (2.17) we have gph = uu'lg and
obtain for the metric tensor gph

2 _ .2
- G- g ey N

an expression which satisfies both original equations {1.3) and (1.4).

From (4.3) and (4.8) we determine the matrices y and x'l at the points A = ¢ o and,swbstiuting
in Bq. (3.17), we determine the matrices A and B. We next use {2.18) to determine their
physical values of Aph and Bph that satisfy Eqs. (2.4) and (2.5) and the relations (1.6)(with
g replaced by gph]:

Aoy = % Shaer-nea- ey Ay (T - &py
a (4.10)
Byp = % g (P - D)+ (I -22P) B, (T- =tpy .

We now calculate the traces Tr zh and Tr Bzh and substitute the results into the equations
(1.5), thus obtaining the physical value f . of the metric component £. These rather lengthy
calculations lead to a simple result: the gndefinite integrals which occur in the calculatien
of fph in (1.5) turn out to be trivial and are easily calculated, and the final result is

Cum my. (24} 1
£, = a 2 £ . 4.11
vh [a(w - 28)(w + Zb)]llz 0 ¢ )

Here C is an arbitrary integration comstant, a and b are the arbitrary functions from (2.2),
(2.3) and £ is the particular solution for the component f corresponding to the particular
solution gy {the function fo(;,n) satisfies (1.5), where A and B are replaced by AO and Bo).

The squations (4.1), (4.4), (4.6), (4.9) and (4.11) give the final solution of the Einstein
equations for the case of simple solitons. In order to obtain concrete solutions one must
substitute into these equations some concrete particular solutions. In order to Mustrate
the method we consider the simplest case when the particular solution of the problem is the
Kasner solution. It is easy to see that the equations (1.3) and (1.5) have the folbwing exact
solution:

251 0
c c 5, v 53 - 1 (4.12)
g = L4 - o » .
0 . 255 0~ “0 % %
o
where C0 is an sarbitrary constant and 5 and s, are constants satisfying the condition

S, * 5, " 1, so that they can be expressed in teras of one arbitrary constant parameter q:

1 1
31-2.1»(1 » sz-z--q . [4°13)

¥We now obtain from Egq. (2.8) the corresponding particular solution for the matrix Yye One can
choose for it the matrix

(a® + 281 + 2931 0 -
; v [(4.18)

Yo
0 (a® + 282 + 2282
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Substituting (4.14) into (4.4) we cbtain the vector m, and then from (4.6), (4.9) and (4.11)
we derive the explicit form of the soluticns. We write out the final result for the special
choice of coordinates when the arbitraty function a{z) and b{n} have the forms:

alg) = ¢+ w/2 b{n}) = = n - w/f2 (4.13)
This cholce means that

a7 -n=t B= L+ n+we=z+u (4.16)
{in these coordinates the solution (4.12), (4.13) takes on the usuval Kasner form,and by means
of a simple transformation of the time t it can be transformed to the standard synchronous

form) .

After simple calculations we obtain the final form of the metric

F3
2q
C.t“" ch(gr+C,) ch(s,r+C,} ch(s,r-C,)
cael 1 2} 02,2 177%3) 25,2 2T"%2) 21y, 2_2sh(r/2
ds TG (=dt"+dz")+ gy > e ldx ety > LR A ztdde.U.U)

where Cl angd Cz are arbitrary constants, and the function r is defined in the fdlowing manner:

a2y 1.2 [ii @ - njl,/z (4.18)
t t t

This is a solution of the cosmological type which cannot be called seolitonic in the strict
sense, since the velocity of the soliton here exceeds the speed of light. Indeed, let us
consider, e.g., the field component 21, and determine the position of its extremun with
respect to the spacelike variable z for various fixed instants of time t. It can be seen
directly that for any t the extremum will correspond to the same constant value of the function
r = ry = const. Then Eq. (2.18) shows that the world line of the eXtremum has the equation

z « t cosh [rolz), and therefore the speed of this localized disturbance exceeds unity.

Thus, we are simply dealing with the time evolution of a given initial state of the field.The
situation changes however if one sets Cy <0 in (4.17). Then the wvariable t becomes spacelike
and z takes on the meaning of a time. Such a solution is already connected with cylindrical

waves and t is the radial coordinate. If one takes the case when the t = 0 axis is free of
singularities, i.e., if one chooses the Kasner indices in the form s, = 0, s, = 1 (g = -1/2),
then the extremum of the component 11 in the radial variable t also corresponds to the

constant value r = ry = 2C,, the world line of the extremum has the same equation as in the
preceding case, but now the velocity of the disturbance is smaller than one. Such a solution
describes a cylindrical solitary wave incident on the axis and reflected from it.

In both cases the solution (4.17), (4.18) makes sense only for zz 2 tz. On the light cons
22 = t? the function r vanishes and the matrix g coincides with the unperturbed particular
solution g,. The solution for g can also be defined in the region 2% < t2 using the following
considerations, which have a general character and refer to all soliton solutions related to
the real poles of the matrix x(i,z,n). A real pole A = n is always given by the expression
(4.1) with a real constant w. If, moving along the coordinate plane, we go from the region
(4.2) into & region where (w - B)" <« az , the quantity u becomes complex and & continuation
of the function g inte this region will be the solution corresponding to the two-pole situation
with A = 3 and A = ., where

u‘m-B-i[mz-(w-BJﬂllz

However, for such a& function we have |u|2 = o? and the poles are situated on the circle
Ikl2 = a2, As will be shown in the next section, the matrix x is identically equal to the
unit matrix if its poles are situated on this circle. This implies that in the region

’
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(o - B)z < az the solution g remains unperturbed and c¢oincides identically with the particular
soclution £p° The solution as a whole, while remaining itself cont1nuous. suffers dis-
continuities of the first derivatives on the light cone (w - B] [one can see from Eqs.

(2.2}, (2.3) that this equation yields a pair of straight lines { = const and n = const).This
phenomenon requires, of course, adiitional investigation and appropriate interpretation. We
note that such discontinuities do not occur in the solutions cerrespond to a yx wmatrix without
poles on the real X axis.

L5 - THO-SOLITON SOLUTIONS

In this section we consider the next-complicated case, when the matrix y has a complex pole
A = p. On account of condition (2.12) it must also have the conjugate pole A = ii; we thus deal
with two poles. The matrix x has the form.

=1+ R/ =W RO -0, Ry =nam . (s.1)

According to (5.14) the vector LN is

L e T L (?al)x-u ’ (5.2)

where Do is an arbitrary (now complex) vector. The matrix M is also complex. The vector n,
can be found from the equations (3.16), which are now two algebraic equations for n, and ﬁa
(as before, the index k takes on only one value). These equations have the following solution:

. 1 PcfalEplea B id[%)cd

ng = p{———== %p(8plpa - —< = (8p)pa ! -
v - U v
(5.%)
I alt Iagi eyl ‘
lv - ul® 15 - ul?
where y = o /u . Substituting (5.3) and (5.2) into the expression Rab * n_my we obtain the
matrix R and from Bg. (3.2) we cbtain the metric tensor g. We can now calculate the
determinant of g and obtain
det g = aﬁfp‘ . £5.4)
where p is the modulus of p expressed in the form
peopelt | (5.5)
Thus, the physical solution gph of Eqs. (1.3) apd (1.4) will be
2 =2 2 g
8ph " P 9 g » det g, = . (5.8)
The final expression for gph is:
2 2 n.m n_m
(B1).p » Sy (Bgly, - 2y (25 + () , (5.7
ph’ ab i? 0/ ab ;7 o o 0'ch
where the vectors n, and m, are defined by Eqs. (5.2) and (5.3). The function p is defined

as before as the solution of the quadratic equation, in which w is now an arbitrary complex
constant, Denoting

W= - e, ' (5.8}

we obtain for the modulus p and the phase ¥ from (3.4) the following system of equations:

(Zml - 2B)4 2”29

cos $ = —y——y— .+ sin ¥ oy .
a® +p a“-p .

(5.9}
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from which we can see that for uy ¥ 0 the poles p and | are either always inside the circle
|1|z - aZ(p2 < uz), or outside it [02 > uz}. For definiteness we shall consider that the pdes
are inside the circle and p" < uz. It can be seen from Eqs. (5.3) that as the poles tend to
the circumference 92 - a the quantity 1/4 tends to zero like (p2 - uz)z and the vector n

a
vanishes like p2 - uz, It then follows from Eq. (5.7) that gph * By Thus, if the poles of
the matrix are situated on the circle p2 = o the solution gph remains unperturbed and

coincides with the solutiom g,.

Having obtained the sclutions for g and h ¥e can now {(just as in the previous casedetermine
the matrices A and B from (3.17) and their physical values h' B h from (3.18). Substituting
the quantities Tr A:h and Tr B;h into the equations {1.5) we obtain the metric component fph
by quadratures.

In order to illustrate the results we take again for the particular solution Bg» ?0' f0 the
Kasner solution (4.12)-(4.14) and consider only two special cases. The first is the isotropic
case, when $; =5, = 1/2, and the second is flat space corresponding to s; = 0, 5,=1

(a = - 1/2). '

If s; = s, = 1/2 we obtain the following solution for the metric:

2

~ds” = Cluuzu'IQ(-dtz-i-dzz) + aQ']‘{ [p% H-(1- 1::]2 cos 2 ¢+ 2pl(1 - uzjsinzt]dxz +

+ [pf H - (1-0)% cos 2 ¢ - 2p;(1 - o?)sin? o]dyz-zpz(l-oz)sin 24 dxdy} . (5.10)

Here we have introduced the notation:

2

Q=piH--0? , H=1+d

2

- 20 cos 24 ., G =p a~?

(5.11)

The quantities Cl‘ Py and p, are arbitrary constants restricted by the conditior on p, and
P2

pi-pl-1 . (5.12)

The functions g and ¢ are determined from the equations (5.9) which involve two other
arbitrary constants: wy and w, .

If one picks the coordinates in analogy with (4.15), i.e., in such a manner that a « t and
@) - B =z, and if one analyzes the behavior of the field components g, as a function of the
spacelike variable z at different times t, one can see that the solution (5.10)-{5.12) is of
the two-soliton type and describes the interaction of two localized disturbances. For any
fixed time t the matrix g will tend to the unperturbed solution £ - diag(t,t) at the in-
finities z + + = , For all z we have 83>t and g,, < t. For sufficiently large values of
t(t >> w,) each component Bab has two extrema in the variable z, which are localized near the
light cone zz - tz. As t decreases these local disturbances start approaching one ancother,
growing in amplitude. As t » 0 (a singularity of cosmological character) both disturbances
in the components g, and g,, fuse into one concentrated near the origin z = 0, reaching at
this stage some finite amplitude. The disturbances in the component 812 do not fuse as t + 0,
but approach each other to a finite minimal distance equal to Zuw,.

By amplitudes we mean the absolute values of the extrema (with respecto to 2) of the com-
ponents of the matrix (g - gg4) gal . One can prove that as t + « the soliton amplitudes tend
to zero, and as t + 0 it is easy to calculate them from the asymptotic form of the matrix g
corresponding to the solution (5.10) - (5.12). If o = t and w; - B =z, then as t + 0 we get
for g (here we have in mind every-where the matrix gph. i.e., the one that appears directly
in the physical solution (5.10))



- 66 -

2 z2 2
L 1- s2 zu,
gt [Feel % fea] (5.13)
11 - &% - iy siz? +wg
8 24 + n§ 52(:2+m§)

where s = (1 + p;)/p,.

We now consider the case of solitons on a flat background, when s, - 0 and 5, = 1 and when by
means of a coordinate change the particular solution (4.12) can be reduced to the Minkowski
metric. In this case the following choice of the functions a(f) and b{n) turns out to be
convenient:

Za = oy shiz + t) + uy R 2b = uy sh{z - t) = wy . (5.14)
Whence, and from (2.2), we obtain:

o = w, shzcht y W] - Bmo- oy ch z sh t . {5.15)
The equations (5.9) are simplest to solve for this choice of the functions a and g.For the
modulus p and the phase ¥ we obtain: '

sin? 4= ch~? ¢ , cos? = th? ¢ . p2 = of th? (z/2) . (5.16)

The calculations lead to the following interesting result:
-as? e w (- at? s az?) e Wl (v + 82 sh? 1) ax? e
. [—,(zbl ch z - a) sh? 2)% + sh? 2 o+ al s bi)z] dy? - (5.17)
- 2271 [y(Zbl ch z - & sh? z) + a sh? z (rz + ai + bi)] dx dy

where we have used the notations

2
1

2 2

w =12+ (b, - a, ch z)? = (% - b2 - n?) ch? t, rem+(al-bl- z)uzsht&a
17 % Y 1 1) c ’ S Tl S '
and the quantities a,, bl, and m, are arbitrary constants satisfying the requirement a%gpi*-i
We note that the constant w, is related to these variables by mg = & - bi - n%.This sclutlon
can be obtained from the known Kerr-NUT solution by means of a complex coordinate

transformation:

g =iz , T=m +(a2 - bz - nz)lfzsh t,T=x, 4=y , (5.19)
1 1 1 13
where 8, r, ¢4, and v are the Boyer-Lindquist coordinates. For bl = 0 we obtain the Kerr

solution in these coordinates with angle parameter a, and the mass m . The metric (5.17) then
corresponds to the case &, > my. This means that the Kerr solution can be obtained by means
of the inverse scattering problem method discussed here, and also directly, by starting from
the very ocutset not with the metric (1.1) but with its stationary anolog, and by choosing for
the particular or "background" solution the flat space in spherical coordinates. Then the Xex
solution will represent a double statiomary soliton.

In conclusion we note that in the derivation of the metrics considered above we have dsc used
linear transformations of the coordinates x, y (with constant coefficients), These have
allowed us to remove some inessential constants and te simplify the solutions.
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LG - ON THE CONSTRUCTION OF SOLUTIONS IN GENERAL

Here we describe briefly a procedure of construction of solutions in the general case,when in
addition to solitons there is also a nonsoliton part of the solution.

We define the numerical function w(i,%,n) by means of the formula

w - % (uzlA + 2B + A} . (6.1)
It is easy to see that, taking (2.2) and (2.3) into account,

Djw =0 Dpw =0 (6.2)
and consequently for an arbitrary matrix T(w) we also have Dlﬂ(m) = 0 and Dzn(w) =0,

We now consider in the complex A plane the circle 11[2 - o and define on it the matrix

function G0 (x,c,n), which in general does not admit of analytic continuation off the circle,
and depends only on the combination w:

Gy = Gglw) . (6.3)

Putting i = ae'T on the circle, verify that the argument of Gy is real and varies from -« to

+= . We require
Gocm) = GO(' ) = I, (6.4]

Moreover, we shall assume that the matrix G0 is real and symmetric:

Co{‘\] - Gn(l) . Go = co . (6-5)
let ¥, be a particular solution of the equations (2.8)}. We define on the circle |x|2-a2 the
new matrix function G(A,L,n):

-1

G(x.T.,n} = ¥, Go Y, . {6.6)

Since D Go(w) = 0, we have the relations
- 1 - = 1 - '

DIG Yer (AyG GA,) » D6 = e (By6 GBy) . 6.7)
One can now show that the determination of the matrix y is closely related to finding the
soluticn to the following problem (the Riemann problem) from analytic funct:on theory. One is

required to find the matrix function X1 holomorphic outside the circle ]Al - uz . and the

matrix function X, holomorphic inside the circle, with the condition that the functions X1+X2
should satisfy on the circle the condition

X] % 6 . (6.8)

Moreover, one can always require that the following nermalization condition hold:

x2(°} =1 . (6.9)
If the matrices x,; and x, are nonsingular in their domains of analyticity (i.e., their de-
terminants do not have zeroes there), and have no poles, then the solution of the Riemann

problem 1s unique. Acting on (6.8) with the operators D, and D, and making use of (6.7),it is
easy to derive the relations
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D33y * 155 XAg) K11 = (Byx; *+ xog XpAp) X3
1% 7 T=w X1t 11 1X2 7 1@ 2™ X2 y
(6.10)

1 -1 1 -1
Doxy * v X1B0) X7 = Opxp * 135 X;Bp) x;

Each of these four expressions is defined (by the way they were derived)on the circle |A|2-u%

but the equations (6.10) also determine their aralytic continuations into the whole complex X

plane. Since in their domains of analyticity the matrix X1+ X; are nonsingular and have no
poles, the singularities exhibited by these expressions are obvious: the first two have apde
at A = o the latter two have poles at A = - o . This implies that the quantities (6.10) have
the form

1 -1 L1 -1 . L
Oy * 3= Xifgd X1 = O * S5 A0 X2 <35 A .

(6.11)
(Dyx; * 1= X;Bg) XL = (Dx, * vie x,B,) X3! = <= B
X1 7 3ea X% X, 2Xz T Yea %2R0’ Xz T Te@ P o
Where A and B are matrices which do not depend om A. But the equations (6.11) now coincide
with the equations (2.11), and since the system (6.11) is compatible, the matrices A and B

satisfy the equations (Z.4), (2.5). The matrix y introduce before equals Xz (it is hdomorphic
at the point ) = 0 and tends to the unit matrix for A + =) and the matrix

g - XZ(O) £y (6.12)
is the metric tensor satisfying the equations (1.4)
The matrices X1 and Xy Bmust also satisfy some additional conditions similar to the conditions

(2.12), (2.13) which follow from the symmetry and reality of the matrix G0 and of the metric
tensor g. These condition are now:

1,20 = x () . g = xy P g, 00 . (6.13)
Until now we have assumed that the matrix X1 and X; are invertible in their domains of
analyticity and have no poles there. The solution of this regular Riemann problem is reduced
to a sclution of a singular integral equation, as is well known. If one represents the

inverse matrices Xil and le in the form

-1 1 z
LR lx Tz vIp 92

(6.14)
-1 1 z
xz a I 4 T — 3 = dz

where the contour T is the circle |A|2 e o? and then substitutes these expressions into (6.8),
one can see easily that the matrix function p(z) satisfies the equations

p(2) + T(z,tm) (I ¢ &y | £ a0 (6.15)

-

In this squations

T» (I-6) (1+¢)1 (6.16)

4



- 69 -
is the Cayley transform of the matrix G; the points z and z' are situated on the circle of
radius « and the integral is to be taken in the principal value sense.

A solution of equation (6.15} yields the purely non-soliton part of the solutiecms of the
original equations (1.3), (1.4). In this case the meaning of the method consists in the fact
that the equations (6.15) present considerably fewer difficulties than the original problem
of integration of the equations (rL.3), (1.4).

If the Riemann problem is not regular and the matrices ¥, and X, are degenerate floninvertible)

in their domains of analyticity, so that xil and XEI have pole singularities there, the
solutions will also involve solitons. The method exposed here also generalizes without diffi-
culty to that case. In this case the right-hand sides of the expressions (6.14}) for the

matrices xil and 151 will contain an additional term: the matrix U(ix.t,n) of the form

s
bep (K %

('i_ + 1——-—) {(6.17)
k = Vk T Yk

which also enters as an additive term into the expression in parentheses in Eq. (6.15).h this
case one has te add to the equation (6.15) a system of equations which determine the matrix
Sk(c.n]{vk are the same functions as in the purely solitonic case), but this system contains
{linearly} also the contour integrals which occur in (6.14) considered as functions of 2 at
the poles A = vi. The derivation of these equations is simple and is based on the same method
as used for the determination of the matrix Ry in the soliton case described above, The form
of this complete system of equations will not be given here. We only indicate that the
equations which determine pure soliton sclutions follow from it in the special case when the
matrix G is identically equal to the unit matrix. If G = T it follows from (6.16) and (6.15)
that T = 0, p = 0.

We also note that the soliton of the general system of equations for B + : = tends to apurdy
solitonic one. Indeed, since the matrix G, is given on the circle |1|2 = %, we may setin its
argument w A " a el¥, Then w = ¢« cos vy + § and for B + = = we obtain w + ¢ «, but on account
of the condition (6.4) this implies Gy + I and from (6.6) it follows that G+I1.But  according
to what was said above, for G + I the solution goes over into a solitonic one. A similar
phenomenon occurs for a + t = also.
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11 -~ STATIONARY GRAVITATIONAL SOLITONS WITH AXIAL SYMMETRY
I[.1 - INTRODUCTION

In a previous chapter which was based on the paper (1) we have shown that in the case in
which the metric tensor depends on only two variables the gravitational equations form a
system which is integrable by the method of the inverse scattering problem. The case was
examined in which one of the varilables is the time and the other is spacelike;this corresponds
to cosmological and wave solutions of the equations of gravitation. It was pointed out  that
there is no difficulty in applying this method also to the case in which both the variables
on which the metric tensor depends are spacelike, which corresponds to stationary gravitationa
fields, One possible interpretation of this case is that of a stationary gravitational field
with axial symmetry. This class of solutions is important in the theory of gravitation, since
it has a clear physical meaning. In this comnection it is interesting to consider the case of
axially symmetric stationary fields separately and to find the construction of the COTTE-
sponding soliton solutions and their physical meaning. This is the purpose of the present
paper. We shall also use this case as an example to carry to completion the procedure which
we described earlier (1) for constructing exact soliton solutions, and deal with one important
point which was left there incomplete. We shall explain the asssence of the question, first
intreducing the metric and the corresponding Einstein equations.

Having in view the application to the case of stationary axially symmetric gravitational Sads
we write the metric in the form {*)

2 b

- ds? = grap? + az?) » g, ax® A (1.1)
where the metric coefficients f and g,p aTe funct:ons of only two variables, p amd z. We use
for the coordinates the notation (x°, xl. xz. X ) = (t.§,p, 2). Throughout this paper the five
Latin indices a, b, ¢, d, £ run through the values 0 and 1 and correspond to the coordinates
t and §.

It is well known that in this case (by using the remaining freedom in the choice of the
coordinates p and z) we can, without loss of generality, impose on the two-rowed matrix g{with
components gab) the following supplementary condition:

det g = - pz . (1.2)

It is now easy to show that the Binstein equations (in vacuum) for the metric {1.1), (1.2)se-
parate into two groups, The first determines the matrix g and is of the form '

(rg,, 8-119 + tog, g, =0 . (1.3)

The second group of equations determines the metric coefficient f for a given solution of Eq.
(1.3) and can be written in the form

(In &), = - o7+ (4™ sp 0 - V), (1.4)

(In £), = (20)°! 8p (W), (1.5)

where the two-rowed matrices U and ¥V are defined as follows:

U = pg, gt . v PR, gl (1.6)

It is easy to see that if instead of p and z we introduce the pair of complex variables
g = (z+ ip) and n = (z - ip), then in the variables f and n the metric {1.1) and Bgs. (1.2}-
(2.6) will be formally reduced to the same form as we studied previously (1). For this reason

{*)} A system of units is used in which the speed of light is equal to unity. The interval is
written in the form - dsz-gikdxidxk. where g.. has the signature - + + + .,
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all of the formal side of the method for the case considered here can be obtained (*) from
the results of our earlier paper (1). Of these results we shall present here only the . basic
yoints which are necessary for a compiete exposition, and shall not go into the details of the
proofs., The details can be found in Ref, 1. '

Let us now turn to the point in the research which was not brought to completion in Ref. 1.As
follows from what we have suid, we can apply to the integration of Eqgs. {(1.2) - (1.8) the
method given in Ref, 1., i.e., apply the method of the inverse scattering problem to the
integration of the matrix equation (1.3) and thus get the major part of the metric coefidents
g,+ There then remains, however, the problewm of calculating the metric ceefficient £, which
is given in quadratures by Eqs. (1.4) and (1.5).

In Ref. 1 it was shown by direct calculations that for the simple soliton solutions given there
these quadratures can be performed completely (i.e., the integrals can be calculated ex-
plicitly), and the answer for the coefficient f£ can be expressed explicitly in terms of the
appropriate partial or background solution of the problem and elementary functions, i.e.,
qualitatively in the same way as the metric components gy . This suggests that the same will
be true alsc on the general case of an n-soliton solution. It turns out that this is  indeed
true, and the metric coefficient £ in the general n soliton case, like the coefficients [ S
can be calculated altogether explicitly. The analysis for this point is given in Sec. 3 <« the
present paper,

Finally, we point out that the question of the integrability of the equations of gravitation
for the case considered has also been investigated by Maison (2), who proved the existence
of an L - A pair for the Einstein equations, though in a somewhat different way from that
followed in Ref. 1 and here (cf. Eqs. (2.1), (2.2)). Harrison (3} found the Bicklund
transformation for the Ernst equation corresponding to this problem.

- N~

Using the results of Ref. 1 (as explained in the Introduction}, we can easily find the L - A
pair for the matrix equatien (1.3) in the variables p and z:

.V = Al 0 +.2V e
Dl'. ez_z' L 4 . DZT = Eﬁ ¥ » (2.1)

AT + p A" + p

where the commuting differential operators D1 and Dz are given by

o . 2 . 2 .
Dl ap m al » Dz ap + ;z—‘.-Lpz- a}‘ (2.2)

and % is a complex spectral parameter independent of the coordinates p and z. It is net hard
to verify that the conditions of compatibility of the equations (2.1) for the matrix function
¥(A.p.z) are identical with the original equations (1.3) and (1.5), if we rewrite then, and
alsc the conditions for their compatibility, in terms of the matrices U and V, in the same
way as this was done previocusly (1). The required matrix g is the value of the matrix
¥{x,p,z) for % = O:

glp. 2) = ¥(0, p, z) . ' (2.3

The procedure for integrating the equations (2.1) preassumes the knowledge of some particular

solution of the problem. Let By» Ugs Vg be some particular solution of Eqs. (1.3} and (1.6),

from which, with Eq.\(Z.l], the corresponding solution ?o(x.p.z) has been found. We then seek

the solution for ¥ in the form

(*) We may indicate that the formal transformations from the variables z,n,a,B and matrices
A, B which we used previously to the variables p, z and matrices U, V of the present paper
are the form £ » (z + ip)/2, n={z-ip)/2, ¢ =1ip, B =12, A=-0U - iV, P s -U+iv,
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YexY, 2.0

and for x(\,p,z) we ger from Eq. (2.1) the following equations:

nx_pv-wx_xp"o'x“o
1 AZ*DZ 12'..p2
(2.5)
Dx_pu+wx_x°“o*“o
2 1Z"’pz J‘2"_92

Now (as before (1)) it can be shown that to assure that the matrix g is real and symmetric
definite supplementary conditions have to be imposed on the solutions of Eq. (2.5). For the
reality of g we have the requirements

XX = x) F(H =¥ (2.6)
(& bar_denutes the complex conjugate), and for g to be symmetric we require
g = x(-p%/2) ggi(n) 2.1

(a tilds indicates transposition). Besides this, compatibility of Eqs. (2.7) with (2.3}
requires

x(=) = I, (2.8)

where I is the unit matrix (here, and often from now on, we omit the arguments p and z of
functions for simplicity).

The soliton solutions for the matrix g correspond, as is well known, to the presence of pole
singularities of the matrix x(A,p,z) in the complex plane of the spectral parameter A. Let us
consider the general case, in which the matrix x has n such poles, which we assume to be
simple, The matrix x{A,p,z) can then be represented in the form :

n Rk
R RS Sl (2.9]

where the matrices Rk and the numerical functions Wy now depend only on the variables p and

We note that in Ref. 1 an expression amalogous to Eq. (2.9) was written in a form which
obviously satisfies the condition (2.6) and which emphasizes the fact that complex poles (i.&
complex “k) of the matrix ¥ can exist ocnly as conjugate pairs. Of course these requirements
still hold here, but experience shows that writing y in the form (2.9)considerably facilitates
the calculations, which it is convenient to do by neglecting the conditions (2.6) and
supposing (until the final form of the solutions is reached) that we have to do with n arbi-
trary complex poles A = uk(k =1, 2, ..., n). After the final form of the solution is obtained
it is easy to assure that the matrix g is resl by imposing definite supplementary conditions
on the arbitrary constants that appear in the solution. This procedure is possible with an
aven number of complex poles in the sum (2.9), and is of course equivalent to introducing the
complex pcles at the very start as conjugate pairs. If, on the other hand, all of the u, in
the sum (2.9) are real, then all of the matrices Ry will also be real and the matrix x then
satisfies Eq. (2.9) automatically.

Substitution of the expression (Z.9) into Eq. (2.5) and the supplementary condition (z2.7)
completely determines the pole trajectories uk(p,z) and the matrices Rk(p,:). The numerical
functions ¥y are deter;ined from the requirement that in the left sides of Eqgs. {2.5) there
are no poles of second order at the points L = u. The result is that sach function uk(p.z)
(with esch index k = 1, 2, ..., n} satisfies a pair of differential equations
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R IH L B S .
' 2oy _ © (2.10)

Vg, = 2PHy (ui +pfy =0,
uhose.solutions are the roots of a quadratic algebraic equations

2 2

uk - Z(MR - z) uk - P = 0 I (2.11)
where w, are arbitrary constants (in general complex),.
Accordingly, for each index k (i.e., for each pole) we have its own arbitrary constant Ups
which determines two possible solutions for the trajectory of the pole uk(p,z):

M Twy -zt [('k - z)2 + pf|1/2 . (2.12)
The matrices Ry are degenerate, and their components can be written in the form

(Rydgp = 0¥ n{) (2.13)

The two component vectors .;k] are found directly from Eqs. (2,5} by requiring that they be
satisfied at the poles i = Uy, and the vectors né are then determined from the condition
(2.7). The vectors nak) can be expressed in terms of the given partial solution fx the "wave"
matrix !o(x.p.z) taken at the valye ¥, for the argument A. These vectors are of the following
form:

Isk) = -‘(:‘k)] -I:!'al (uk,p.z)-|ca (2.14)

where !61 denotes the matrix inverse to ¥,. (Here and from now on summation is to be under-
stood over repeated vector and tensor indices a, b, ¢, 4, £, which run through the values 0
and 1. Summation over other indices occurs only when explicitly indicated). In Eq. (2.14) the
négl are arbitrary constants.

k)

The vectors n£ can then be determined from the following n-th order system of algebraic
squations:

2 (1), =1 (k)

”51 rh,nn *u m [g‘:')c‘l . kg =1, 2, ..., n . (2.15)

where ths matrix Py is symmetric and its elements are
sz - “Ek) {So}cb IIEI) (Dz + l-lkil],)-l {2.16)

(in these formulas gg{p.z) is a given particular sclution of the original equations (1.3)).If
we introduce the symmetric matrix Dkz inverse to the matrix Tye!

n
pal ka rpl = Gk; ' ) {2.17)
then we get from (2.15) for the vectors nik)

n{k) L)

n .
= 28y Dy uy ' _ (2.18)
where

X x
L L N R T (2.19)

According to Eqs. (2.3), (2.4), and (2.9) the required matrix g is
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g = ¥(0) = x(0) ,0(0) = x(0) By (1 - k;l Rk 'ﬂ;l) 2q (2.20)
Now, using Bqs. (2.13), (2.18)}, and (2.19} we get the metric components 8gb:

Bab = (0)ab - kb1 Dotk vt N M (2.21)°
¥With the expression (2.21) the matrix g is obviously symmetric. Let us now consider the
' question of its being real. If all of the functions uk(p,z] are real, the components £,p 0re

automatically real, if we take all of the arbitrary constants appearing in the solution to be
real. In fact, the particular sclutiom wotx,p.z} is always taken to satisfy the secondd the
conditions (2.6), and consequently !0(1) is real on the real axis of the } plane, i.e., at
the points A = u,. It can now be seen from Eq. (2.14) that the arbitrary constants né:) that
occur in the vectors nik) must be taken real, and then the vectors mak) will alsc be real. It
then follows that all the other quantities from which the matrix g is constructed are Teal.
We now suppose that there are also complex values among the functions my, Wy: evos Vg The
conditions (2.6) then require that all the complex poles appear only &s conjugate pairs; for
each complex pole X = u its conjugate X = 1 must also appear. Suppose there is such a pair
of goles A =y, and A = B with p_ = n_. To these poles there correspond vectors ngp) and
miq , which according to Eq. (2.14) are given by

P o [ oo
mgq) - DEE) ["61 (lulq. p'z)]ca

A simple analysis shows that the matrix % will be real if for each such pair of complex~
conjugate poles the arbitrary constant mcg) and mégl are taken conjugate to each other.This
means that the vectors mgp) and m§Q] corresponding to each pair of conjugate poles.are also
conjugate to each other (nﬁq) = iip)). since the function Yotl.p.z) satisfies the condition
TO[X] - 30(1). Accordingly, we can formulate the following rule that determines the choice of
the arbitrary constants 'cg) in Eq. (2.14): to assure that the matrix % is Teal, it is neces
sary to choose the arbitrary ncg) in Bq. (2.14) so that the vectors mak) corresponding to
real poles X = u, are real and the vectors ngp) and m§Q] corresponding to each pair of
complex-conjugate poles i = Yp and L = Vg = ﬁp are complex conjugate to each other,

Satisfying the requirements that g be real and symmetric is still not enough. It must not be

forgotten that g must also satisfy the supplementary condition (1.2)}. We now calculate  the
determinant of the matrix g. The form (2.21} is not convenient for this calculation, and we
use a different representation of our solution. We note that the process of perturbing the

background solution g, and obtaining from it the n-soliton solution g, as described above, is
formally equivalent to the introduction of the n solitons one at a time successively.The frst
step is to go from the background metric g, to the metric g, containing one soliton, corre-
sponding to the presence in the matrix x (which we at this stage call x;) only one pele Aeu,.

This one-soliton solution is easily obtained from the results given above. The matrix xl(x)
and its inverse xiltx) can be written in the following form

X, * I+ h‘% + pz)uil (x - 111)-1 Py '

(2.22)
R B S ICHRE TP Rl M
where the matrix P1 has the elements
(Pylap = ‘én (8g)cq "‘}51) / mél) (8g)a ¢ “?) (2.23)

and accordingly has the following properties:

2 _
Pl =Py , SpR =1 , det P =0 {2.28%)
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The quantities ) and mgl) arve given by Egs. (2.12) and {2.}4) with k = 1. We now get for the
matrix 8¢

2 -2
g " cho) gy - [I - (Ul + Dz) My PI-I By (2.2%)
It is not hard to calculate the determinant of g,. Owing to the general relation
det (I + F) =1 + 5p F + det F

(which holds for an arbitrary two-rowed matrix F) and the properties (2.24) we get

-

get [1- @l + 0By up? o] = - 0% 072 (2.26)
and consequently
det g = - oF ui¥ det g, . (2.27)

We can now take the solution g, as a new particular eor background soluticn and repeat . the
operation of adding a soliton to it, that corresponding to the pole X = Uy To do this we PR
the new background matrix function ¥; = x; ¥, , take its inverse Til and calculate it at the
point A = Ugs and then find the corresponding vector Mgzl

(2) | 4(2) -1 “
Ma Mc(}l [‘fl ("2‘ p,z)-l ca
after which we construct the matrix P,, in analogy with Eq. (2.23):
- u(2) (2) (2) (2)
(Pz)ah "c (81)ca My / Mg (sl)df Mg 4
which matrix has the same properties (2.24) as the matrix P,.

When we now construct the matrix xz(l) {(this matrix is calculated from the same formulas@22),
with the index 1 replaced with 2}, we get the two-soliton solutien g,:

g = ‘_I - (u§ + g% uzz P{' I:I - (u% + p9) uiz P;| 2g
Continuing this process, we get the n-soliton solution (2.21) in the form
T 2 2y -2 7
A LR L RN LY (2.28)

¥here all of the matrices Py satisfy the same conditions as the matrix P1 does:

z
t=P, . SpR =1 , detP =0 . (2.29)

P
Naturally the explicit form of the matrices Py rapidly becomes cumbersome as k increases, and
therefore this way of calculating solutions is less convenient than the one previcusly
described, But the representation of the solution in the form (2.28) is useful for the study
of some particular questions, and especially for calculating the determinant of the matrix g.
The important thing for this is only that the matrices Py have the properties (2,29}, not
their specific form. The contribution from each factor in Eq. (2.28) to the determinant of g
can be calculated trivially, and the result is

n
det g » (-1)" p?® (r nl) det gy . (2.30)

If we take the particular solution By 85 satisfying by definition the condition det g, = -pz.
then it follows from Eq. (2.30) that the number of solitons n must always be even, since an
odd number would change the sign of det g and viclate the physical signature of the metric.
Accordingly (in contrast with the case investigated earlier (1}) on a physical background
all stationary axially Sy-uetric splitons (even those which correspond to real poles ) = uk),

’
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can appear only in pairs forming bound two-soliton states(*).
We still have to construct an n-soliton solution g which not only satisfies Eq.(1.3}but also
the suﬂglelentary condition (1.2). We shall call such a solution a physical one and denote it
by g(p . Constructing it is simple if we note that det g for any solution g of Eq. {(1.3)
satisfies the equation

p'l[p(ln det g),pj,p + (Indet g),,, =0

Then it is easy to verify that the matrix

g L (- get ) M2 g (2.31)
also satisfies Eq. (1.3), and alse the condition det g(ph) = - pz. Now supposing the number
n of solitons is even and det gp = - pz, we get from Eqs. (2.30) and (2.31) the final

expression for the metric tensor:
g™ e s oM (g L der g .2 (2.32)
k=1 C
where the matrix g is given by Bq. (2.21).
103 - CALCULATION OF THE METRIC COEFFICIENT £

It is also convenient to do the calculation of the coefficient £ in two stages. First we
calculate the value of f that follows from Eqs. (1.4) and (1.5) when we substitute in them
the'nonphysical solution g given by Eq. (2.21), which does not satisfy the conditiondetg-—p{
and then use a simple procedure to find the physical value of the coefficient, f(ph).which is
obtained from these same Eqs.(1.4) and (1.5) when g(ph] is substituted in them instead of g.

To calculate f we must determine from Eqs.(2.5) the matrices U and V; this can be done by
equating the left and right sides of these equations at the poles i =ip and 3 = - ip (cf. the
analogous procedure in the previous paper (1)}. Then calculating the traces Sp(Uz - Vz) and
SP(UV) and substituting them in Eqs. (1.5) and (1.6) we find £ by direct integration. It is a
remarkable fact that this integration can actually be carried out. The key point in calculating
the coefficient £ corresponding to an n-soliton solution is to determine it for a one-soliton
solution (which coefficient we denote as fl)' described by Eqs. (2.22) - (2.27). Having done
the necessary calculations with the scheme indicated above (in snalogy with the way this
was done in Ref., 1), we get the following result for the ome-soliton solution:

£1C £ ol v oD ry (3.1)
where C, is an arbitrary constant, £, is the particular(background} solution for the
coefficient t, which corresponds to the sclution g4, and Ty, is the single component of the
matrix (2.16), which is all that exists in this case (k = 1 and ¢ = 1):

rip = 6 ¢ e 2 gy mY (.2

(the vector m{!) follows from Eq. (2.14) for k = 1).

The next step in the calculations is that, taking the solution g,, f1 as a new particular
solution and repeating the cperation just performed (as was explained in the foregoing section
in connection with finding the matrix gzj, we get the ceefficient f, that corresponds to the
two~soliton solution with the poles ) = u; and 2 = u,. At this second step we already have to
deal with only calculations of an algebraic nature, since the need for integration appears in
the whole procedure only once, in the transition from the backgreund sclution g,, f, to the
solution g,, fl, which contains one soliton.

Omitting the details of the calculation, we give only the result:

2

£ = €y 705 G + 07 0]+ 6HT (g Ty - 7] (3.3)

(*) Nevertheless we can obtain physical solutions with an odd number of solitons, but for this
it is necessary to take a background solution with a_nonphysical signature,, for which
det £q " pz.
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Here C, is an arbitrary constant, f; is the same background solution as in Bq. (3.1), and
Tyys Ty 8nd Py, are the components of the matrix (2.16). We now have three independent
components of Pkl' since the indices k and ® can take two values, 1 and 2.

Equations (3‘13 and (3.3) suggest that in the general n-soliton case the coefficient f is
given by the expression :

n B 2B 2 271
€7 Co £ 0" (T D) [T 6+ o8] der (3.4

(where k, ¢ =1, 2, ..., n). Since we see from Eqs. {3.1) and (3.3) that this formulat indeed
holds for n = I and n = 2, we can prove that it holds in the general case by using the method
of mathematical induction. This proof is given in the Appendix to the present paper, and
shows that Eq. (3.4} is indeed correct in general.

Now we must determine the physical value f(ph) of the coefficient, i.e., the value that would
be obtained from Eqs. (1.4) and (1.5) if we substituted in them the physical matrix 3(ph) of
Eq. (2.32) instead of g. From Bq. (2.31) we get the obvious relations i

uPR) o o (PR (PW-1 Ly, [1 - 1 o(1n get g),p] o,

v | pgPD) glPR)-1 _y _ % o(ln det g), I

When we now substitute in Eqs. (1.4) and (1.5) the matrices U(ph] and V(ph) instead of U and
V, we find that the physical coefficient fﬁph) is given by the formula

(ph) . 1/2 -1
£n £, 070 Q7 (3.5)
where fn is the value of this coefficient which is given by Eq. (3.4) and the function ¢ is
defined by the equations

(In Q),_=

2 p{ln det g]b (1n det g),,

1
Z
(n Q), = 3 p[(an det g)% - (1n det
p Z o gk,
On substituting here the expression (2.30) for det g (with the condition det Bp " -pz]ue find
that these equations can be integrated easily, and the answer can be written in the form
- —rnd n - n n
Q" = const pT@TIND/Z (1 )™ [ o] T on -t (3.6)
k=1 =] kilnl
>4

From this and Eqs. (3.4) and (3.5) we get the final expression for the physical value of the
coefficient f:

nl n n -1
£PR) o c(PB) ¢ 0772 (R ow™ |; Oy - wd?| " det 1y, (3D
k>%

(Cn(ph) is an arbitrary constant).

For clarity we point out that the product

T 32
I Hy = U

k,p=1 k £
k>t

is equal te 1 for n = 1, to (pz - “1)2 for n = 2, to (u3 - u2)2(u5 - uljz(uz - uljz for n=3,
and so on. In deriving Eq. (3.7) we have assumed that no two of the quantities Bysligasee, B
are equal.

n

Accordingly, the final form of the n-soliton solution can be written in the form

Ls
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- ds? - fﬁph) (ap? + dz?) + gggh3 ax® ax® (3.8)

where féph) is given by Eq. (3.7) and the matrix elements gggh} are determined by Eqs. (2,32)
and (2.21).

1LY - Tvo-SOLITON SOLUTION ON A FLAT RACKGROUND

In this and the following sections we consider the application of the results presented above
to the case in which the background metric 8y £y is flat and given by the interval

Z 2 2

- ds? = - at? + p? ae? 4 ap? - a2? (4.1)

That is, f0 =1 and g " diag(-1, pZ) with the obvious property det (go] = - pz. The matrix

Vo is equal to zero, and for the matrix U0 we have U0 = diag (0,2). From Eq. (2.1) we get the
corresponding solution for ?U(A.p.z):

-1 0
v, = (4.2)
0
0 pi-2z3-22

which satisfies the requirement YO[OJ = gy From this and Eq. (2.14), using Eq. (2.11), we

easily find the components of the vectors mgk):

{¥) = c{K) ak) w (K)ol (+.3)

where Csk) and C{k] are arbitrary constants.
Now from Eq. (2.16) we get the elements of the matrix rkli
1 £y -1 - -
R B S A T TSR TS R (4.4)
From BEq. (2.19) we get the components of the vectors Nik) :

(k) . _ ¢k} (k) , (k) -1 2
No Co R N1 C1 woop . (4.5}
Together with the expressions (2.12) for the functions hk we now have everything necessary
for constructing n-soliton solutions on a flat-space background.

Let us now consider the simplest case of all. As was already stated at the end of Sec. 2,
solitons on a physical background (with either complex or real poles) can appear only in
pairs. Consequently, the simplest case will be a two-soliton solution, corresponding to two
poles, i = Uy and 3 =y, . It is not hard to show by direct calculation that what we have hem
is just the Kerr-NUT solution. In our previous paper (1) it was already pointed out that a
double stationary soliton on a flat background, corresponding te a pair eof complex - conjugate
poles, gives a Kerr-NUT selution with an "anomalously large" rotational moment (ie,a solution
without horizons and with a base singularity). In fact, here we get precisely this situation
for v, = ﬁl . On the other hand, if both functions, Uy and By, are real, the solution corre-
sponds to the "normal® situation, with the singularity hidden from an outside observer by
horizons.

These assertions can be verified by direct calculation of the metric. Let us represent the
constant w, and w, that appear in the relatioms (2,11} and (2.12) in the form

wy =zg v 0, wy =2y =0, (4.6)
where z, and & are new arbitrary constants. We now introduce instead of p and z new
coordinates vy and 4:



=79 -

R 172 - g
po= [(r - m)z - ez] sin ® v Z -2y =(r-m)cos b , 2.7

where m is &n arbitrary comstant whose meaning will be clear later. Then from Eq. (2.12)i -is
easy to express the quantities ¥, and u, in terms of the new variables * and &, In this
calculation we can choose the signs in the formula (2.12) either the same for ¥,y and Uy, or
else opposite. It is not hard te show that both cases lead to the same metric (to within
linear transformations of the two coordinates t, ¢ in terms of each other, and a trivial con-
formal transformation, multiplication of the interval with a constant).

Let us consider first the case of like signs. If we choose the plus (*) sign in Eq. (2.12)for
both values u, and My then substituting the expressions (4.6) and (4.7), we get

2 2

up = 2(r - ® - o) sin % . up=2T -m-o)sin®d | (4.8)

From this (using the exprossion (4.7) for p)} and from Eq. (4.5) we find the components of the
vectors Nél) and Néz). and from Eq. (4.4} we find the matrix Tye and its inverse Dkl {in this
case k,2 = 1, 2). After this we get from Eqs. (2,32) and (2.21) the components of the metric
tensor giﬁh) and from Eq. (3.7) the metric coefficient fgph] . Substitution of these -
quantities in the interval (3.8) gives the final form of the solution, which can be reduced
by simple linear transformations of the coordinates to the standard form of the Kerr-NUT
solution in Boyer-Lindquist coordinates.

Omitting details, we point out that without loss of generality we can subject the arbitrary
constants CO and C{k) that appear in the expressions (4.3) for the vectors lgk] to two
conditions:

IR e I B P I I I | (6.9)

which are equivalent to the requirement that the variable y indeed be the Boyer-Lindquist
radial coordinate. We then introduce two arbitrary constants a and b defined by

eM el o ef e =y, D c{? eV (M -a . (4.10)

From Eqs. (4.9) and (4.10) it follows that

PL R T (4.11)

Now the metric (3.8) contains only the constants m, a, b and takes the form

2 -1 2

- as? = wala,? .+ wde? - w7l (8 - a? sin? @) da1f - 4[}acos - 4a sinzo(n?+b2i]d1d4 N

Z 54 2b cos 8)2 - sin? e(r2+bz+az)%] FYCIS T (4.12)

+ [A(a sin
where the variable T is connected with t (the original coordinate xo = t) by the relation

o=t + 2ap _ (4.13)

and the quantities w and A are

w = 12 + (b - & cos e)z , A= rz = 2mr ¢+ az - bz' " B (4. 14)
(*} We point out that the indicated choice of "signs” here has a precise meaning only for
sufficiently large positive values of the variable r and real values of the constants

w) and w,. In the general case there is only a choice of one branch of the o}her of the
solution of the quadratic equation (2.11).
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It can be seen from this that the Kerr-NUT solution with horizems corresponds to real poles
A o= By and X = p, , since in this case the constant ¢ is real {uz + b2 s azj‘gﬂime constants
w, and Wy and the functioms u; and u, are real along with o. If the quantity ¢ is imaginary
(lz + bt < az], then the constants 0y and W,y and the functions ¥y and u, are complex and
conjugate to each other. This case corresponds to a solution without horizons.Furthermore the
metric (4,12} and the constants m, a, b are of course still real, but the original constants
Cgk), as Eqs. (4.9) and (4.10) show, must be taken complex and related by.C£z - Cil), which
we see from Eq. (4.3), means that slso uiz) = ﬁél). This agrees with the rule for choosing
real solutions with a complex-conjugate pair of poles that were formulated earlier in Sec, 2.

Let us now look at the second possibility for choosing the solutions of Eq. (2.11}, the c¢ne
that corresponds to using different signs in Eq. (2.12)}. Choosing the plus sign for u; and
the minus sign for Uy, we get

26

¥y = 2{r - m + a) sin ¥ . u, = - 2(r - m + g) cos?

% . (4.15)

Calculations like the foregoing ones show that in this case we again arrive at a  Kerr - NUT
metric, the only difference being that instead of the variables r, ¢ we will now have certain
new coordinates r' and ¢', conected with the original variables xo = t and xl = ¢ by a linear
transformation different from that in Eq. (4.13). The new relations are 1‘-c1t+c2¢, ¢'=c3 ¢,
where the coefficients are real only if the constant o is real (i.e., if uy and u, are real),
and become complex when o is imaginary. This means that for imaginary ¢ the matrix is complex
in the original cecordinates t, ¢; this is quite natural, since in this case, as can be seen
from Eq. (4.15), the poles A = vy and ) = Hy do not compose a complex-conjugate pair.

Besides this, the connection between the arbitrary constants Cik) and the parameters m, a8, b
are now different:

S N R I C I __
1) () _ (1) (2 o 1 2) . 1y a2 (3.16)
C1 Co - Co Cl = 3 C](. ) Cg + Co 3 c](. Y.l b .

but the relation (4.11) between o and the constants m, a, b is still valid.

In conclusions we point out that the only actual physical solution is that of Xerr, since the
presence of the NUT parameter b makes the metric no longer asymptotically Euclidean and
produces a number of nonphysicai properties of the solution (the relevant analysis has been
given by Misner (4)).

- n-

In this section we consider some general properties of the n-soliton solution, confining our-
selves to one of its possible types. We shall assume that on the background of a flat  space
with the metric (4.1} an even number n of solitons are introduced, corresponding to the poles
A = Hy A= Mgy veay A= U, . We divide all of the functions " k=1, 2, ..., n) into
pairs and introduce the Greek index y, which will number these pairs and takes only the odd
values from 1 ton - 1: y = 1, 3, ..., n-1. We thus have n/2 pairs of pole trajectories

(“Y » “Y"'l) .

Te understand the physical meaning of the solution it is helpful to examine first a special
case which corresponds to a diagonal matrix g, i.,e., to a static n-soliton field remaining
after the rotation has been turned off. To obtain such a special case we set all of the
arbitrary constants Cék) in Eq. (4.3) equal to zero, and then all the uék) also equal to zero
It now follows from Eq. (2.15) that all the nék = 0 and the matrices Rk as we can see from
Eq. (2.15) take the form

Ry = ' ,
o a2 W0

=
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This means that all the matrices Pk in the representation (2.28) of the solution take the
form
e :
01

in accordance with the conditions (2.29). Then from Eqs. (2.28) and {2.32) we get the fillowing
solution for the diagonal case under consideration:

h _, 1

g™ = 57" o ef™ ~ 0 L g8M - - o7 fM . (s.1)
The metric coefficient f&ph) can be found from Eq. (3.7); to do so we must calculate the
determinant of the matrix rm {with Cgk} = 0). It is simpler, however, to determine flsph)

directly from Eqs. (1.4) and (1.5), since the solution (5.1) is simple and easy to integrate.
The result is

2 n n n -1
ft(lphJ = const p(rl +2n)/2 [ B (g - I-I,')Z:I( n Hk)l-n LH (I-I: * 92)]_ (s.2)
k,t=1 k=1 k=1

k>4

¥e now determine from BEqs. (2.11) and (2.12) the functions Hpo which we have arranged in the
pairs l[],l7 . "i*l)' Confining our treatment to the case when the signs in Bq. (2.12)are chosen
differently for the functions of each pair, we have

A . [(""'1 _ Z]Z . pz:lllz .

2 Z 11/2
1+1'z'[("'1+1") “’]/

(5.3)

¥ "o

41

Instead of each pair of arbitrary constants o, and ©oyyr WE introduce new constants zy and L~
setting

wo®z - B . m7+i =z +m . (5.4)

If we now introduce n/2 pairs of functions r_{p,z) and B?(p.z)(gi\ring to each pair of poles
its own "radisl and angular coordinates”) through the relations

1/2 )

p = r,r(r,v - ZIY}] sin B‘Y , z-z = (YY - ‘Y) cos 07 (5.5}
we get from Eq. (5.3)

u, = 2(r, - m) sin? -z'! ,

(5.6)
2 -]

yap = - Z[rT - 2'7) cos '21

Using these expressions for p and u,, we get from Eq. (5.1) the component géﬁh] as the

following product of n/2 factors:

@V e - -mrha - my -yl (5.7}
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For the case of the two-soliton solution Eq.{(57}will have only one factor, the Schwarzschild
expression for the coefficient gsgh). Calculating from Eq.(5.2) the coefficient féph)for this
case and writing out the interval, we indeed get the standard expression for the Schwarzschild

metric with radial radial coordinate Ty and polar angle 9. This result also follows, of
course, from the general form of the two-soliton Kerr-NUT solutiom, given‘in the preceding
section (case (4.15), (4.16)) with Cgl) = Céz) = 0.

To interpret the n-soliton static solution with the "potential™ (5.7) we must choose a
suitable radisl variable. Any one of the functions rY(p.z) could now serve as a radial coor-
dinate, but it is most natural to define the radial variable im such a way that the dipole

moment relative to it vanishes in.the expansion at infinity of the Newtonian potential of the
system in question. As is well known, the Newtonian potential here is ¢ = 1 + gsgh), and from
Eq.(5.7) we have

v=1-@-mrha-mgzh oa-m ). (5.8)

Let us try to define the "true" radial cocordinate y and polar angle & by relations of  the
same form as Eq. (5.5):

p = I:*r(‘r - Zm)]uz sin © . z=2p" (r - m) cos & . (5.9)

but with new constants m and Zg, which are subject to definition. From Eqs. (5.9} and (5.5) we
can find functions rY[r,B) and By(r.B) and obtain their asymptotic expamsions for v + =  {in
the first approximation we have for r + = simply LV and ev = §). Substituting these ex-
pansions into Eq.{5.8), we find the expansion of the potential ¢, and from the condition that

it must contain no dipole term we can determine the constants m and z,. In this way we get

n-1 [n-l n=1
m= I m . F P I m,2z)/ I m . (5.16)
y=1 h i H y=1 h O § =1 Y
and then the expansion for ¢ takes the form
p=mrleqBeosto-1 el (5.11)

where q is the quadrupole moment of the system. For the case of a four-solitom solution, for
example, (where the index y takes only the two values 1 and 3) we have

q = mmy I:(zl - z3}2 - mz:l {my + ms)-l .

These results show that the n-soliton static solution is a localized perturbation in an
asymptotically flat space. For a sufficiently remote observer such a field can be regarded as
an external field produced by n/2 localized axially symmetric structures, each of which  Thas
its own mass m and its center of mass lying on the axis of symmetry at the point with coordi-
nate z, The equations (5.10) show that the total mass of all these n/2 objects (or pairs of
solitons) is equal to the sum of their masses, and the coordinate z, of their common center
of gravity is given by the usual expression of the mechanics of particles. All of the mul-
tipole moments of the field can also be expressed in definite ways in terms of the constants
L and Zye .

I1f we now suppose that in this system there appear "rotatiocnal motions either of the whole or
of the individual elements" arcund the axis of symmetry, the resulting case will correspond
to a nondiagonal metric with gégh) # 0. In the,special case of a two-soliton systemconsidered
in the preceding section, this change corresponds to the change from the Schwarzchid solution
to that of Kerr. Just as in that special case, we must also here assure that the sdutionwith
n solitons is asynpfbtically Euclidean. In the two-soliton case this made it necessary to set
the NUT parameter equal to zero. This means that the off-diagonal component gé?h)of the metric
must decrease like r-1 as T + « (in the Kerr-NUT solution gégh)—b cos &FO{T'I) for T™w), Then

the coefficient of rl in gégh] gives the total rotational moment of the system.
L4
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it is not hard to find the behavior of the components giph] for v + = in the general case of
an n-scliton metric. As in the two-soliton case we must introduce the notations (4.6)for each
pair of constants By, Uiy and for each pair of functions Wy Uyyy We must introduce a pair
of "coordinates” Ty 8 by the formulas (4.7}, After this we get from Eq.(5.3) expressions
for u? and Pyal of the form (4.15), At infinity all of the variables rY, BY coincide,so that
it is immaterial which pair we take as spherical coordinates r, & if we are concerned only
with the first terms of the expansion for r + o,

Now from Eq. (4.3) we get the asymptotic form of the vectors mgk). and from Bqs.{4.4)and2)5,
that of the vectors n,”°. From these it is now easy to find the behavior of the components

(gh]. The result shows that the asymptotic behavior of the metric cocff1c1ents gagh for
T + » is precisely the same as in the two-soliton case:

h . -
ggg.] + -1, gfgh) + 1% sin? 6, gé?h) > b; cos 8 + b, + O(7 1] ‘ (5.12)
where b, and bz are constants which can be expressed in terms of Csk) and C{kl For the metric
to be asymptotically Buclidean for r + « the parameter bl must be zero, which gives a
supplementary condition connecting the constants Cik)
by cg¥, ef¥y -0 . (5.13)

After this the constant b, can be eliminated from the asymptotic form of the metric coeficient

gé?h) with & linear transformation of the form t = t* = bz .

APPENDIX

We shall now prove the validity of Eq.(3.4). As was already stated in Sec. 3, we have only to
show that is holds for the case m+ 1, on the assumption that it holds for the case m. We
suppos¢ that we have some solution g,. £ , ¥, of our problem, and on it as background we
construct & solution [ S fn*m‘ L by introducing m solitons corresponding to poles x-un+r

AT Wnage e A ® UL We assume that for such a *case m" Eq. (3.4) is true,and consequently
the coefficient £ is of the form

£f. =¢C £ o™ T 2 FE LI "7t b (A1
I+ n+m n P (k-l Hnek) _l(un*k e n+m -’ 4
where Cn"l is an arbitrary constant and Dn+n is the determinant of the matrix rn+k.n+1 (re-
lative to the indices k,1 =1, 2, ..., m).
o o (nek) n+8) 2 -1
Tnek,n+1 * M (837 a1 é G Hn+k Yped) . (A.2)

Here and for what follows we have adopted the following conventions about indices: n and m
are given constants; the letters k and % are used to denote running indices which go through
the values 1, 2, ..., m; and the Greek letters a,B denote indices (appearing later} that go
through the m + 1 values 0,1,2,...,m.

As we have already said,

Dn+m = det I‘n+k.n+!. * (A.3)
The vectors l£n+k) in Bq. (A.2) are constructed according to the rule {(2,14}:
(n+k) _ _(n+k} f.-1 :
e Ml IO i (A4

Let us now consider that the solution - S f ,¥, was obtained from another solution g, _,. fn-l'
¥h-1 by adding to it one scliten, correspondlng to the pole X = u .. In this case according
to Bqs.(2.22) and (2.25) we have
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[I * (u: + o) u;I o - un)'l Pn] Y _

vlenl - 02+ o0 vty . (A.5)
=@ = [1-0le e wiele, - (W)

The matrix P, is constructed from Yh-1 and g1 according to the law (2.23}:
Y (m) ; 4 (n)
Pa =t Gaotdea ®p /% Bpdg lg - (A.7)
where the vector &  is given by the expression
-1 ~ :
:.a(‘n) - ;3:1) E,n_l (pa-Ps z)_|ca . (A.8)

Besides the vector Lgn] ws need the vectors Li“‘k) (k =1, 2, ..., n), which are given by

n+k n+k
"E ) - ( ) [n-ltumk' e z:'lt:a * (A-9)
where lég+k) are the same arbitrary constants as appear in Eq. (A.4).

Now from Eq.(A.4), (A.5) and (A.7) we can obtain an expression for the vectors u[“ k)in terms
of the vectors l(n) and l(“+k)

.£n+k) - 1£n+k) - &

-1 n
n;n) Bn Stk ‘a ) * (A.10)

where we have introduced the matrix En+a,n+8(°'a = 0.1.2,,...,8):

- 1{nta {n+p) , 2 -1
Eﬂ*“.n+ﬁ 1£ ) [3n-1]cb lb (p” + Wn+a “n+3) . (A.11)
Then, substituting Eqs.(A.10) and (A.6) in (A.2), we find an expression for the matrix

r in terms of the matrix E

n+k,n+l neo, n+ B’
- -1

Thek, n+l Bn+k,n+1 - (Bn,n) En.n+k En,n-l»l . (A.12)
From Eq.(A.12) it follows that the determinants of the matrices E va n+g and T/ 4 ne1l are
connected by the relation

det Bn+u,n+s = Bn.n det rn+k,n+1 . (A.13)
Now from Eqs.(3.1) and (3.2) we get a connection between £, and fn-I:

£ % Cy £13 By o ooup (u2 + 997} (A.14)

(C, is an arbitrary constant). Substituting this expression in Eq. (A.1) and using Eqs. (A.3)
and (A.13), we get

£ . = const . £ mloon 2y ln i, e zj-ldetﬁ (A.15)
n+m i a=0 m¥a’ |oq ‘Vnep T P n+a,n+f .

This result, together with the expressions (A.8), (A.9), and (A.11) for the matrix En+u.n+8 B
nothing other than the formula (3.4) itself, except that it is for the "case m+l", with the
solution Bpem® fn+u' ném being obtained from 8,1 fn-l' =1 by adding m + 1 solitons to
the latter. This analysis completes the proof that Eq. (3.4) is valid.
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111_- ONE-SOLITON COSMOLOGICAL WAVES
IIL.1 - INTRODUCTION

The method of inverse solution of the scattering problem has been used by us {1) to describe
s procedure for integrating the gravitational equations for the case of a metric tensor
depending on only two variables., The metric we used was written in the form (™)

- ds? = g£(- de? + az?) + g,y d4x° dx® (1.1)
where the functions f and g;p depend on the coordinates t and z. Our notation for the
coordinates is (xo. xl. xz, x") = (t, x, ¥y, z). The first Latin letters a and b always Tun

through the values 1 and 2 and refer to the coordinates x and ¥. The Latin indices i and X,
which occur later, refer to four-dimensional space and take the values 0, 1, 2, 3.

In the previous paper (1) we considered the Einstein equationms corresponding to the interval
(1.1} only in empty space, The application of a similar method to the integration of these
squations in a space filled with matter is as yet an unsettled question. Meanwhile the so-
lutions belonging to the class of metrics (1.1) include such fundamental exact solutions as
the Friedmann cosmological models, for which the presence of matter is essential. It would
certainly be interesting to construct new exact cosmological sclutions describing e evolution
of finite disturbances such as gravitational solitons, appearing against the background of a
Friedmann space. For the reason we have noted, this cannot at present be done in general fora,

There is, however, one special case in which the method already described (1) can still be
applied even in a space with matter. This is the case of an ideal fluid with the “superrigid”
¢quation of state c¢ = p, proposed by Zeld'ovich (2). The specific form of this equation of
state will not play any decisive part in our work, since we shall deal with soliton per-
turbations of the gravitational field itself, not of the matter, which remains unperturbed in
our solutions. From this point of view the matter serves only for the provision and mainte-
nance of the Friedmann background selution, and it can be hoped that the qualitative picture
of the behavior of gravitational solitons on this background will remain approximately the
same for other equations of state. Besides this, exact solutions of the Einstein equations,
analogous (in the sense that the behavior of the metric coefficients 8,5 Temains the same in
them)} to those obtained here for a space with matter, exist also in vacuum. The way they are
found in the general case is described in Sec. 2, and the actual construction is given in
Sec. 4.

In this paper we shall consider one-soliton solutions on the background of Friedmann wmodels
of all three types. Let us point out their main qualitative peculiarities. These solutions
are inhomogeneous cosmological models, in which the distribution of the gravitational field
at the initial time shows a clearly expressed maximum with respect to the spatial coordinates
near some axis in three-dimensional space. During the expansion of the world this disturbance
dies away, and after. some finite interval of time it produces a gravitational wave moving away
from the axis, with an amplitude decreasing with time. Accordingly, open models, during the

{*) A system of units is used in which the speed of light and the gravitational constant are
equal to unity. The interval is written in the form - ds’ = Bik axt dxt, where g, has
the signature (-, +, +, +),
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final stages of the infinite expansion, go over into Friedmann models. In the closed model,
this process of homogenization (and also of isotropization} continues only up to the moment
of maximum expansion. During the stage of contraction of the world the fractiond perturbation
of the gravitational field increases again, and at the final moment of the evolution it is
again concentrated on an axis in three-dimensional space. In the open models this axis is
topologically equivalent to an infinite straight line, and the soliton disturbance possesses
cylindrical symmetry relative to it. In the closed space this assertion retains its wmeaning

only locally, since the axes on which the soliton is concentrated at the initial and final
times are circumferences of great circles of the thrre-dimensional spherical space of the
Universe. Furthermore, the initial and final c¢ircles do not coincide and nowhere have any

common points, being disposed normal to each other.

Another peculiarity of these solutions is the very possibility of treating them as per-
turbation of Freidmann models, since these solutions reduce, by a continuous limiing procedure
with Tespect to an arbitrary constant parameter, to Friedmann metrics. This property is not
completely trivial, since one-soliton solutions do not admit limiting reduction with respect
te parameters taking them directly to the metric on whose background they are constructed by
the method expounded in the previous paper (1). In the case studied here the one-soliton so-
lution is close, not to the original background model, but te an exact copy of it, which can
be obtained by a discrete symmetry transformation and can be regarded as a different specimen
of the same solution on a different physical sheet. This is discussed in more detail in the
Appendix. This interpretation means that after obtaining the final form of a one-soliton so-
lution we forget about the method by which it was derived, snd take as the background solution
the one that iz obtained by the appropriate passage to a limit,

The solutions obtained depend on two arbitrary constant parameters. Depending on the regions
of variation of one of these parameters all solutions can be divided 1nto two classes. Half
of the solutions contain no singularities other than the usual cosmologicd singutarities with
respect to the time, which are already contained in the background solution itself. This fact,
together with the existence of the limiting transition with respect to the parameters to the
background Friedmann models makes this set of solutions extremely satisfactory from the
physical point of wview; they describe perturbations of the Friedmann models which are finite
(but with an infinitesimal case) and every-where regular. The other half of the solutions, in
addition to the background cosmological singularities, have discontinuities of the energy
density of the matter and of the first derivatives of the metric coefficients on the light
cone. The existence of such discontinuities in one-soliton solutions was already pointed out
in Ref. 1. We emphasize that everything we have said about limiting transitions to back-
ground solution, and about what is to be taken as being a background solution,relates only to
the first set of regular solutions. We shall mot consider the case of the discontlnuous so0-
lutions in this paper.

Solutions with the indicated properties describe one possible mechanism for the production of
gravitational waves of cosmological origin. Their sources are inhomogeneities of the gra-
vitational field near the initial cosmological singularity and the dynamics of these
inhomogeneities during the further expansion of space. In the course of time the ihomogeneitios
disappear (at least in open models}, but they leave behing a trace In the form of decaying
waves which still exist for some time in the universe at later stages of its evelution . This
entire precess, however - the appearance of an inhomogensity, its prewave stage, and its
final product, a gravitational wave, makes up a single whole, the evolution of agravitational
soliton. In the present case we are dealing with solitons that have cylindrical symmetry, and
we cannot call them localized disturbances in the ordinary sense of the word. Nevertheless,
the existence of this example allows us to suppos¢ that analogous phenosena can occur with
three-dimensional perturbations against the background of uniform cosmological models.

If the matter filling space is an ideal fluid with the equation of state ¢ = p, its  energy~
momentum tensor is
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T

Tip = Zeuguy *eggy . wuyy =<1, 2.1

and the Einstein equations take the form
Rik = Zeuiuk . (2.2)

Since for the metric form (1.1) the components Rga and Rya of the Ricci temsor are dentically
equal to zero, it follows from Eq. (2.2) that the velocity components u, must aiso be equal
to zero. It can be seen from this that the main part of the Einstein equations, which de-
termines the matrix components 2,2 has the form Rab = 0, and is thus the same as in vacuum.
For this reason the method developed in Ref. 1 can still be applied in the present case.

It is not hard to show that with the use of gravitational hydrodynamics we can, without Hmiting
the generality of our solution, express the matter field in terms of a single scalar function
¢, which we call the fluid potential:

eep=-g 4 % L oueaT Vi, (2.3)
The Binstein equations and the equations of hydrodynamics now become the following system:
Rig = 0 0a o+ #i¥e0 (2.4)

The possibility of this representation of an ideal liquid with the equation of state ¢ = P
was noted in Ref. 3. The fact that the components u, of the velocity are zero means that the
potential is a function of only two variables, t and z. Denoting differentiation with respect
to t with a dot, and that with respect to z with a prime, we get from Eqs. (2.3) and (1.1):

e=p=026t 02 - 90D (2.5)

-1/2

up o) My umeMy oy =0

As in our earlier paper (1), we shall denote by g a two-rowed matrix Zyp and for its de-

terminant and derivatives we introduce the notations

det g = ot ., A== ag, g-l » B=og g'l . (2.7}

where the comma indicates ordinary differentiation and instead of t and z we have introduced
the light variables ¢ and n :

t=gC~n . ZE=Lotwn . (2.8}
If we now write the metric coefficient F as a product
f=£i, F s (z2.9)

it is easy to show that the equations (2.4) can be divided into four groups. The first and
second of them exactly repeat the Einstein equations in vacuum for the metric

2 b

-as? = £, (- dr? v ahy . gap 4x* ax® . (2.10)

These equations can be written (cf.Ref.1) in the form

(og, g1, * (g, g =0 (2.11)
(1a £,), = (1n @) /(1n @)+ (Sp Az)/wqc . (2.12)
(In £,), = (In ), /(n a) + (Sp 32]/4uu“ . C(2.13)

The third group is just a wave equation for the potential ¢: v
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(ade),, *+ (a8,), = 0 _ @

and the fourth group determines the factor F which corrects for the matter
(1n F}y = ¢,/(In @}, (In F), = ¢ /(In o), (2.15)

It follows from Eqs., {2.10) and (2.7) that the function g satisfies the usual wave equation
as before:

G =0 . _ : (2.16}
With this condition the equations (2,15) are automatically compatible if ¢ satisfies Eq.(214),

Accordingly, we see that to solve the problem we must first integrate Egqs.(2.11)-(2.15), thus
constructing some exact solution of the Einstein equations with the -gtric (2.10). This part
of the problem has already been studied in Ref. 1. After this we must determine the fluid
potential ¢ from Eq. (2.14) and with it find from Eg. (2.15) the coefficient F. Substituting
this in Eq. (2.9), we get the desired metric (1.1), and the potential ¢ determines the energy
density and the components of the velocity of the matter in accordance with the relations
(2.5) and (2.6).

In the framework of the metric (1.1} we must now determine the Friedmann solutions. The
standard forms for these, when four-dimensional spherical coordinates are used, contain a
dependence on two sSpace coordinates, while the interval (1.1) assumes a dependence on only

one space variable. However, there exists a transformation of the three-dimemsional coordi-
nates which allows us to reduce the Priedmann solution to the form (1.1).This transfermation
(found for a different reason) is given in Appendix D of Ref. 4, and here we need only a
special case of the result. The element of length in three-dimensicnal space in the cloaed
model is given by the expression

a1? = a? (ax®+ sin? x sin? o d¢? « sin® y @87y (2.17)
where the variables y, 6,4 range over the limits ¢ < Xx¥ 0 <o <cx, 0<¢ i 2*. The
transformation

sin z = sin x sin 8, cos z sin y = sin x cos ®, X '§: (2.18)
reduces (2.17) to the following form: | :

dlz = az (dzz * sin2 zdxz + cos2 zdyz) . (2.19)

in which the ranges of variation of the coordinates are 0 < z < /2, 0 £ x < 2N, sWS Y £ ¥ .
The three-dimensional line element of the open space is described by the expression

2 . a? (ay? + sh® y sin? 8 4¢? » sn? ¥ ded) (2.20)

dt
with the following ranges for the coordinates: 0 < x <= , 0 <8 2%, 0 < ¢ < ¥, The
transformation analogous to Egs. (2.18) is

shz=shysiné , chzshy=shycost K x=2¢ |, - (2.)

and this reduces Eq. (2.20) to the form

2 2

dit® = az (dz2 + sh2 2dx® + ch2 zdy2) . (2.22)

where the coordinates vary in the range 0 < z < w, 0 € X ¢ 21 , ~ @ <y & + =, We choose the
three-dimensional length element of the planar space in the form

z

ar? = a? (az? + 2?2 ax? « &yh) (2.23)
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and assume that in this expression 0 ¢ 2 < @, 0 < x < 2w, -= 2y <+ v, so that the varables
z, x, y form an ordinary cylindrical coordinate system.

With the use of Eqs. (2.23), (2.22) and (2.19) it is now easy to establish the form of the
Friedmann solutions in the framework of the metric (1.1). For the flat model we have

- ds? = t- at? e 2zt v 2% ax? v aydy =D, c=3 >0 220
For the open model
2 .2 P 2

-ds?ealsh 2t(-ar?+dzesh?zaxlechlzay?) | 4 =32 the, € =3agishI2e, t>0. (2.25)

And, finally, for the closed model we have

2 2 1/2

~ds?=alsin 2¢(-dt?rdzesinladxtecoslzay?) | ¢ =( P n g, ¢ =3a3%sin 32t octensz@.26)

In the last two solutions a4 is an arbitrary constant. For simplicity the analogcus constant
in Eq. (2.24) has been given a fixed value.

To obtain the soliton solutions with the models (2.24) - (2.26) as backgrounds,it is necessary,
in accordance with the procedure described in Ref. 1, that we now determine the wave matrix

¥(1, t, z} corresponding to these metrics; after this, the construction of the solutions
reduces to mere zlgebraic operations. It turns out that for all three models the LA equations
can be integrated rather simply and the matrix ¥ can be expressed in terms of ¢lementary

functions. The details are given in the Appendix, and in what follows we give only the final
forms of the resulting expressions, so that if the reader is not interested in the way they
are found there is no need to refer to the Appendix or to the previous paper (1).

In concluding this section we recall that in accordance with the discussion in the Introduction
we are considering only the solutions that are associated with a perturbation of te gravitationa
field. The metter potential ¢ remains unperturbed in our models, although there is no

difficulty in cbtaining, by applying precisely the same technique to Bqs. (2.14)-(2.15},exact
solutions containing along with the gravitational fields also the soliton fields ¢.

The one-soliton solution on the background of the flat model (2.24) is

-1 -
- dsz -zzs'z t I:sztz + {1:z + u)2] [;ztz + (tz + u)z] (- dtz * dzzj +
-1 ., : _
+ t sztz + (t2 + u}f] { sztzzz t-gz~(t2 + u)z +-qz2[t2 + ) - qzu dxz * - (3.1}

+ l:sztz + (t2 + u)z - q{.tz + u):l dyz + 2q5 u dx dyl} .

Here the quantities s, ., and q are arbitrary constants, related to each other by the equation

q = s% - 12 (3.2)
The quantitv u is a function of the coordinates and is given by the expression

1/2 ' _

u=-7 et ah ol [(zz AR L Rty . (3.3)

Here the second term contains the arithmetic value of the root (*}. - S

(*) We impose this condition only for definiteness. The opposite sign of the square root in
Eq. (3.3) leads to the same physical results, The same is true for the funct1on u in the
expressions (3.25) (see further discussion).
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¥We note that the determinant of the matrix g found from Eq. (3.1) is of the same form as in
the background solution (2.24): det g = uz, where a = tz. The fluid potential for this so-
lution also retains the unperturbed form

¢ - (%31/2 Int ' (3.4)

30 that the matter is stationary (u3 = 0). The energy density can be found easily from Eq.
{2.5):

-1
€3 szs-zt-s[lztz + (e u)z‘] I:sztz s (2f . u)z] . (3.5)

The deviation of this valye from the background value is due only to the perturbation of the
metric (the metric coefficient f) and not to a perturbation of the matter field as such.

From these formulas we see that if we let the parameter q go to zero (sz - zzj the solution
goes over into the background, Bq. (2.24). We now determine the fleld of the soliton as the
precise deviation of the metric from 1ts background value. This field can be described with
a symmetrical perturbation matrix H, which is constructed according to exactly the same rule
as in the infinitesimal case:

My = Gy - 8 GfH7TH L Hyy = (835 - 8520 2D (3.6}

= - (0) ,(0),- 1/2
Hyp = Hy = 812(817" 2327) , (3.7)
where the quantities with superscript zero relate to the background solution (2.24).

Besides the matrix H, the soliton is alsc characterized by the perturbation of the metric
coefficient £. It is more convenient, however, to consider instead of this the perturbation
of an equivalent quantity, the energy density &£, for which we write '

E=(c-ep e . (3.8)

From Bqs. (3.1), (3.5), and (2.24) we get:

H = q[s e+ (x? ”.)z] o, (3.9)
' ' suz~1 -t% g SREEE
-1
Eeql ? e+l [sztz . (t2 s u)z] . (3.10)
Let us examine the behavior of these quantities near the moment t = 0 of the initial cos-

mological singularity. It is easy to show that the first nonvanishing terms of the matrix H
for t + 0 (and arbitrary values of z) are given by the expression
|s? - sz
H=qs"2 (1% + 291 (3.11)
-Sz -2

and for the quantity E the first nonvanishing term is
E=q 2s7%? a2yt (3.12)

It can be seen from Eq. (3.11) that the field of the perturbation H is concentrated, during
the first few moments of the evolution, near the axis z = 0 of the axial symmetry, in a
cylindrical volume with the characteristic radius z ~ 1. The components H,, and sz have ex-
trema with respect to the variable z right on the axis z = 0, and H,, has extrems at distance
z = } from the axis. The perturbation of the energy density (i.e., the metric coefficient £)
is proportional to t2 in the first nonvanishing approximation, and is already of the next
order of smallness as compared with the main terms of the expansion of the matrix H. Never-



-9] -
theless, as can be seen from Eq. (3.12), the distribution of the quantity E with Tespect to
%z also localized on the axis z = 0 with the characteristic width z ~ 1.

For simplicity we will suppose that the constants s and 1 are of the same order of magnitude.
Then there is a single characteristic length & in the solution, and the asymptotic expressions
(3.11) and (3.12) are the first terms of the expansion of the solution in powers of t/p in
the region where t < &. As in the time t increases we come to the region t >> £, in which all
the components of the matrix H go to zero for t + w, However, the laws of this dying away are
different for points located near the light cone z = t and far from it. If t»>>y, and 2z < t,
then we get from Eqs. (3.3) and (3.9) the following assymptotic expression for H:

1 -sz(tl-z%)"1
H=gq (t? - 281 . (3.13)
-sz(tz-zzj'l -1

from which it can be seen that both near z = ¢ and also at any other fixed point in space the
perturbation field falls off for t according to the law Hyy « Hyy - thz. Hyp - ;‘t‘. On the
light cone the expressions (3.13) diverge, but this is due only to the fact that they cease
to be applicable when we get into the strip t - z % 1 adjacent to the light line z = t, The
behavior of the matrix H inside this strip can be estimated by determining its asymptotic
behavior on the cone z = t itself for t >> & The main term for this is easily found from
Eqs. (3.3) and (3.9):

Hegq (s +18)"1 ¢l . 63.14)

Thus we see that for any given time t >> ¢ the amplitude of the perturbation H at points of

the light cone is of the order of 2t”! and is very large in comparison with its values at
other points of space (where the components of H are of orders 12472 and 14t"). This means
that the initial perturbation H, which for t » 0 was concentrated near the axis z , 0 with
characteristic dimension z - 1, while decreasing with time produces in the later stages a
gravitational wave moving out from the axis with the speed of light. The amplitude of this
wave also decrecases with time, and the field distribution in it, concentrated on the light
cone, has the same characteristic width 8z - { as the initial cosmological perturbation of the
metric, It must be remembered, however, that these assertions, as always, have only an
approximate meaning. Actually the quantities H and E contain, besides the wave part, per-
turbations relating to the background geometry, and it is hard to give an exact meaning to
each of these effects by itself. This fact is well illustrated in am analysis of the relative
perturbation E. At the moment when the evolution begins this quantity is vanishingly small

and is given by the expression (3.12), For t >> ¢, in the region z > t the approximation for
E is.

B=qtl 7% ¢2 (¢ -2 | (3.15)

At points of the light cone z = t we have for t >> ¢
B=q(s? 2B 1o e (3.16)

and finally, in the region t > z with t >> 1 we get

Eeq %o g2 2 (o200 (3.17)
It can be seen from these expressions that the fractional perturbation of the metric
coefficients f, and along with it the energy density ¢, remain small only at the initial
moment of the evolution and at the points of space where z >> t, i,e., in regions not yet
reached by the gravitational wave. In regions t > 2z, through which the wave was already
passed, there remains a final decreasing perturbation E « q;z - 1, which reduces a change of
the constant parameters of the background Friedmann solution.

v
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Accordingly, in the final stages of the expansion for t + = we have instead of Eq. (2.24) the

following asymptotic behavior:

-as? = %357 gi? v a4ty o fax? e ayh), (3.18)
e=3 s2172 ¢ (3.19}
This phenomenon illustrates the interaction between the wave and background parts of the

solution. It may be possible to speak here of an exchange of energy between the gravitational
wave and the background, but this would require that one give some satisfactory definition of
these concepts.

Finally, we must discuss the physical meaning of the arbitrary comstants contained in the
solutions (3.1) - (3.5). The foregoeing analysis has shown that the constant & is the charac-
teristic width of the initial distribution of the solitom field. After this we can associate
the constant s with the amplitudes of this distribution, A different, and not less clear,
physical meaning of the constant s can be obtained if we examine in more detail the deveopment
in time of the profile of the component H,, of the perturbation. For t + 0 the shape of this
profile follows from Eq. (3.11).

Let us now determine the extrema of Hay with respect to the variable z at an arbitrary time
t, by considering the equation aszlaz = 0, It is easy to show that this equation has two
solutions: one of them is z = 0, independently of the time t (which cerresponds to the smooth
behavior of sz on the axis of symmetry), and the second solution gives the following world
line: zz - s"1 {st + LZ)(t - 8) (we assume s > 0; otherwise the formula must be written
with s replaced with [s|). It follows that there is a second extremum on the profile of H,,,
but it appears only after a finite time interval t = s after the beginning of the evolution.

Up to the time t = s the distribution of sz with respect to z has a smooth nature as in Eq.

(3.11). After the time t = s the world line of the second extremum(") moves out toward in-
creasing values of the coordinate z, and for t » = it asymptotically approaches the light
line z = t - q/2s. This means that the time t = s marks the beginning of the wave stage of
the evolution of the soliton, i.e., the generation of the gravitational wave. Thus the

variable s has the meaning of the delay time, or the time of eebryonic development of the
wave. The pattern of the behavior of the compoment H,, is shown in Pig. 1.

FIGURE 1 - Behavior in time of the profile of the absolute value of the perturbation sz in

the flat model. The sequence of plots corresponds to increasing values of the time t: (a)
distribution of the perturbation at the time the evolution starts, t = 0; (b) the initial
perturbation begins to die away; (c)} profile near the critical time t - s, beginning of
production of the wave; {d) the wave recedes to infinity with the speed of light, its am-

plitude decreasing as |q/2 st].

(*) Throughout its entire extent this world line remains spacelike and corresponds to the
phase velocitf of propagation of the wave. The physical velocity of the wave is equal to
the speed of light for large times, and in other regions it is not uniquely definable.

The values of the quantity sz at the extremal points 32 » 5'1 (st + :2](t - g} are given
by the simple expression Hy, = - q/2 st, from which it is apparent that as t increases
this extreme value decays in the same way as the field H cn the light cone e = t, Eq.

(3.14).
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Let us now pass on to the one-soliton solutions with the open and closed Friedmann models as
backgrounds. These metrics can be written in the following unified form:

2 + dzzj +

as® = a2 rs”2 k7 sin 2kt QU (- 4t

*

(&)~} sin 2 kgL [}zk'zaﬁL sinkz + ou cosly + os™% uR sin® y) dx® +

2

+ 8 r'l (Zag L coszkz - ckz u sin2 Y - ukZS'z wR cos2 ) dyz +
a2 =1 2

+ qk s u{R - %) cos 2y dx dy R (3.20)

Q=s?sinkt +Rcos?kt , L =t sin’ kt+Rcos’ kt . - (3.21)
The fluid potential is of the form

¢ = @Y1 g k) (3.22)
and from BEq., (2.5) we get the energy density

¢ =3apt s? rtid1gt sind z ke, (3.23)

In these formulas a5, s, %, o, r, and vy are arbitrary constants, connected by tworelations:

2

r=-kZteglzy . oest-or (3.24)

The quantities u and R are functions of the coordinates given by

u=aZ (2k¥) " 1icos 2y+cos 2kt cos Zkz-[?cos 2y+cos 2kt cos Zkzjz-sinzzktsinzzk£]1’2} (3.25)
2
R-kaaa cos-ZZYEgk-atgzkt(cos 2Zy-cos Zkz)—uk'zcos'zk{l . (3.26)

where the square bracket taken to the power in % in Eq. (3.25) means the arithmetic root.

The solution depends on two essentially new constant parameters, y and s. The constant a, is
of the same nature as in the background models {2.25) and (2.26), and the constant k (if k¢0)
can be eliminated by a transformation of the constants and a scale transformation (kt, kz) =+
(t, z). The choice of the constant k determines the type of the model. For real values of Xk
(in this case we can take k = 1)} the solution describes the evolution of a soliton on the
background of the closed Friedmann model, For imaginary k (here we can set k = i) we get the
analogous solution on the background of the open model, and the case k = 0 reduces to  the
soliton perturbation of the flat model, which we have already discussed. It is not hard to
carry out the passage to the limit k + 0, by setting ag = % and renaming the constants in the
following way:

s = 25", s = 4q, cos 2y = -1 =2 kzlz '

where the constants s', 1, and q are to be regarded as independent of k. In this case we get
from Eqs. (3.24) - (3.26) in the limit k + 0:

red4g?, gqes?-a?, R = ax® (¢f+ ¥
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and for the function y we get the formula (3.3), if we consider kz < 0 {for k2 >0 we get a
result analogous to Eq. (3.3), but with the minus sign for the square root}. It can now be
verified that the limit of the metric (3.20) for k = 0 exists and can be reduced by a simple
transformation to the form (3.1), in which s' will appear instead of s.

It is easy to see that the solutiun (3.20) - {3.26) goes over into the background solutions

(2.24) - (2.26) through taking the limit with respect to the parameter g (o + 0). As has
already been pointed cut, we shall consider here only those regions of variation of the
arbitrary constants in which our solutions have no additional singularities beyong the mitial
cosmological singularities that are already present in the background models. The ~ solution

(3.20) - (3.26) in fact has this property if the constant r is positive:
re-x2egt2y>0 . (3.27)

This condition means that for the closed model (real k) we must choose a purely imaginary v,

and for the open model vice versa: imaglnary k, but real y. The constant s is always real,and
2

consequently, with the condition r > 0 the parameter o = 5” - T can in fact go to zero. It is
easy to see that for o = 0 the metric gives

- as? - a2 k" lsin zke (-at? + az? + K7F sin’ k2 ax® o cos? kz ay?) (3.28)
and it follows from Bq. (3.23) that

e = 3352 k% sin™® ke . (3.29)

For k = [ (lg = 1/2), k = i, and k = 1 the form (3.28) becomes identical with the respective
metrics (2.24), (2.25), and (2.26). There is similar agreement for the potential ¢ and the
energy density e.

We note alse that the determinant of the matrix g, i.e., of the two-row block Bab* has the
following simple form:

det g = o , o=al (257! sin 2kt sin 2kz (3.30)

and, as can be seen from Eq. (3.28), remains the same as in the unperturbed background metrics .

For the case of the open model the solution (3.20) - (3.26) describes approximately the same
pattern of evolution of the soliton as is found in the flat model. With the closed model, on
the other hand, there are naturally qualitative differences because there are no infinite
values for either the time or the space coordinates. For this reason we confine ourseves here
to closed model only. In all further formulas the parameter k is regarded as real, and the
parameter y, as imaginary. In the closed space the evolution of the model occupies a finite
time interval from the moment kt = 0 (the big bang) the time of collapse of the Universe Kkt =
= /2, It is not hard to show that near the initial instant kt + 0 the asymptotic form of the
solution (3.20) - (3.26) is

%11 ° agk-ssin 2kt sinzkz[§+us'zsinzy sinzkz(coszkz - sin® y]-%] .

22 = a%k’lsin 2kt coszkz[é-or'lsinzy sinzkz(coszkz - sin? y}'f] e

(3.31)
2 -1 4 -1
B1z ® -~ 3 o(4ks) cos 2y sin 2kt sin“2kz{cos 2y + cos 2kz) .

Y

2

£=alklsin2ke , ¢-= 3k° ag? sin”> zxt .

and near the finite cosmological singularity kt+n/2 we get for these same quanfities:
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g7 * ag % Isin 2kt sinzkz[} + 05" 2sin? ¥ coszkz(sinzkz - lin;*?f?]-_ L
8y = ag k lsin 2kt coszkz[} - ar lsin? y cos?kz (sin’kz - sinzyj'f} .
(3.32)
2 k '1 = 2 "1 . . .
212 = 9 o(4ks} “cos 2y sin 2kt s5in“2kz (cos 2y - cos 2kz) "
£ =182 ag k! sin 2kt £ = Sszr_lksaazsin-szkt .
In Eq. (3.31) one must take sin 2kt - 2kt, and analogously in (3.32) sin 2kt = n - 2Zkt.
The field of the soliton for the solution {3.20) - (3.26) is determined as before by the

perturbation matrix H and the fractional change E of the energy density These components are
given by the same formulas (3.6) - (3.8), in which the quantities 2ab and ¢ must be taken to
mean the expressions shown in Eq. (3.20) and (3.23), and the corresponding quantities with the
index zerc refer to the background solution (3.28}, (3.29). Setting

k=1 , siny=18 , s=2pa(l + a2+ 22yt | (3.33)

where A and p are new arbitrary constants (and A is already real), we get from Eqs.(3.24) and
(3.31) the asymptotic values of the perturbation fields H and E for t + 0:

H,=Q- pz}p'zazsihzx(cuszi+az]-1 , Hy, = {pz-ljazsinzz(cnszz+az)'1 .

By, = (2 - y9p 1a1+8% Y 251n 2 cos z(cos?

4251 gm0 (3.34)

and from Egs. (3.24) and (3.32) we get their asymptotic forms for t » w/2:

2

Hy, = (-p2)p 2a%cos?z(sin?sea®)™t |, Hy, = (p2-1)8%cos’z(sinzea?)t. |

2z

1/2 2482yl Eapda . (3.35)

2

Hy; = tp2-11p 1a(1+8%1 %5in 2 cos z(sin

These formulas show clearly the distribution of the perturbation H in the initial and  final
moments of the evolution. Near the initial instant the absolute values of the components H11
and sz are largest at z = m/2 and equal to zero for z = 0. The absolute value of le has its
maximum in the region w/4 < z < 1/2. With the passage of time the maxima in the distributions
of the quantities Hl1 and H,, are shifted in space, and at the finite time t = #/2 they are
at z = 0, while H,; and H,, go to zero at the former position of the maxima, z = n/2, The
extremum of the component le also shifts during the cycle of evolution, through a finite
distance in the direction of smaller values of z, and for t + x/2 it is in the range O<z<n/4,
Figure 2 and 3 show the initial and final profiles of the perturbations H22 and le as func-
tions of the value of the parameter A, which determines the widths of the corresponding
distributions (for definiteness we consider p > 1, &4 > 0 and use a fixed value of the
parameter p).

In a closed space (0 < z < w/Z} we can speak of localization of the perturbations only for a
sufficiently small value of A. If &4 << 1, then we can see from Eqs. (3.34) and (3.35) and the
figures that the field of the soliton at the beginning and at the end of the evelution is
concentrated near z = /2 and z = 0, respectively, in narrow ranges of width &z - &,which are
much smaller than the number a/2, i.e., than the linear extent of the Universe ” in the
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FIGURE 2 - Profiles of the initid and final
distributions of the perturbation component
Hy, in closed models. Curves a, b and c
correspond to the beginning of the evdution,

vinan
AR,

FIGURE 3 - Profiles of the initial and final
distributions for the compaonent H,,. The
upper row shows profiles near the time t=0,
and the lower row shows them near the final

t+0,and d,e,and £, to the final time t-+n/2; moment t=x/2.Curves a and 4 are for very
a and d correspond to very large values of large values of the parameter 4, and b, e
the parameter 3,for which the width of the and c¢,f show the change of shape of the
soliton is comparable with the size of the distributions as & is made smaller. The

Universe; b,d and c,e show the change of
shape of the initial and final distributions
as A is made snaller The value of sz at
the maximum is p 2, throughout.

respective extreme values of Hl on‘ﬂm upper
and lower diagrams are(l-p )/2p and fp -l]ﬂp.
and the coordinate values at which they
OCCHY are g1ven by the equatlons cos 2z -
= -(1+28%)"! and cos Zzﬂ=(1+2& ) res-
pectively.

coordinate z, With this condition the picture of the evolution of the soliton in the stage of
expansion of space is partially similar teo what happens in the flat model; during & short time
interval after the beginning (t g 4) the perturbation H in the region around z = 7/2 will die
away, without changing the general shape and width of its profiles. Near the points with
z = 0, on the other hand, the perturbation H begins to grow. After a critical time t - & this
process will continue, but along with it a gravitational wave appears from the region near
z = #/2 and is propagated toward z = 0 with the speed of light. At the time of maximum ex-
pansion, t = w/4, it has passed through a "quarter of the Universe" and reaches the Tegion
with z = 7/f4.

With further increase of the time from t = n/4 to t = #/2 the perturbation H becomes con-
centrated in the region at z = 0, and after a time t ~ /2 - &4 it absorbs the wave which has
arrived there. The final distribution of the field of the secliton is given by Eqs.(3.35} and
again has a small width §z ~ A, It can be shown that the distribution of the field in  the
gravitational wave itself is similarly small in width during the entire time of its propa-
gation from the region z = %/2 to the region at z ~ 0. The process is shown schematically in
Fig. 4.

For large values of the parameter & both the initizl and the final distributions of the field
of perturbations has a width of the order of the size of the whole Universe (corresponding to
the profiles shown in Fig, 2, a and d). For any observer to study the profile of the soliton
will require a time of the order of the entire cycle of evolution of the Universe, and the
usual interpretation of a soliton as a single localized disturbance can be applied in this
case only in a conventional sense.

As for the perturbation E of the energy density, in the approximation considered here it is
zero at the beginning of the evolution, and Eq. (3.35) shows that at the concluding stage of
collapse it becomes constant in space, producing a change of the parameters of the back-
ground Friedmann model. Here we again encounter the same phenomenon as was described in the
analysis of the perturbations on the background of the flat model.

’
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In conclusion we note that the geometrical

W’ b: . l?ci of the points z = /2 and z = 0 are

s circles in the closed three - dimensional

4; H . space of the Universe, and are great cir-

. . cles on this hypersphere. It can be seen

L L from Eqs. (2.18) and (2.19)that in standard

v four-dimensional spherical coordinates the

equation of the circle z » %/2 is x = #/2 ,

6 = v/2 and it may be arbitrarily called the

FIGURE 4 - Schematic representation of the equator. The equation of the circle z =0 is
evolution of a soliton in the closed model. 8= 0 and & = v, and it can be called the
The sequence a-¢ corresponds to  variation polar axis. These circles have no points in
of the time from t = 0 to t = n/2. The common. The equator and polar axis 50
picture corresponds to rather small wvalues defined are completely equivalent and can be
of the parameter A, interchanged by a suitable transformation
of the four-dimensional coordinates. These

closed curves are the equivalent of what

gas an infinite axis of cylindrical sym-

metyy of the soliton in the open models.

It was shown in Sec. 2 that for any solution of the form (1.1) in a space with matter des-
c¢ribed by a potential ¢  there is a corresponding solution of the gravitational equations
in vacuum, of the form (2.10). By using Bq. (2.9) this solution can be written in the form:

-1 b

- as? = gl (car? v d2?) v gy ax® ax® (4.1)
where the functions £ and g,p &re precisely the same as in the solution with matter, and the
coefficient F is determined by the equations (2,15). It is easy to find this coefficient for
the solutions (3.20) - {3.26) by substituting in Eq. (2.15) the expressions for the potential
¢{Bq. (3.22)) and the function a Eq.(3.30)). A simple integration gives

1/2

(sin 4kg)~ Y2 (sin 4kn)"Y/2 | (4.2)

F = F, {sin 2kt)
where [ and n are the light variables (2.8) and FO is an arbitrary constant,.Substituting this
result along with the metric coefficients f and 2, °f Eq. (3.20) in the expression (4.1), we
get the desired vacuum soclution.

We note here that an interesting qualitative study of closed vacuum cosmological models with
metrics of the type (1.1} has been given by Gowdy (5).

LI1.5 - APPENDIX

We shall here describe briefly the method for deriving the solutions presented in Sec. 3. As
shown in the previous paper (1), the main step in finding them is the determination of the
matrix functions ¥(X,L,n) corresponding to the background metrics (3.28). Such a function
satisfies the equations

DY = (a - o) Av , D,y = (A + @)t By ) {A.1)
where the operatdrs D, and D, are given by

. -1 _1

D1 - ac - 2(x = a) utlal N DZ = 3“ + 2{x ¥+ u). quak . (A.2)
Here ) is a complex spectral parameter, ¢ and n are the variables (2.8), 02 is the determinant
of the matrix g of the background solution, which is of the form (3.30), and the matrices
A and B are defined from Bq. (2.7} with the same matrix g, which, as shown in Eq. (3.28), is

1 2 g

g = diag(alk >sin 2kt sin’kz, aZk"'sin 2kt cos’ka) {(A.3)
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(the commas in Eq. (A.2) and the letter 3 denote ordinary differentiation).

Integration of Egs. (A.1) and (A.2) with k # 0 leads to the following diagonal matrix ¥:

Y5, " [ask'ssinzzkt sinﬁz-a%k"l cos zkt-k'z(azﬂﬁaﬂz)]l/z v
2 2 =1
!22 = (o° + ZBA + )7) !11 . !12 = . (A.4)
where
o = a%(ZkZ)'lsin 2kt sin 2kz , B = - a%(Zkz)'lcos 2kt cos 2kz . (A.Sj

The limit kX + 0 cannot be taken directly in Eqs. (A.4) and (A.5), as in the case of the flat
model, but it is easy to find a sclution for which it is possible. The point is that the
matrix ¥ and the function B (the second solution of the wave equation satisfied by a)are not
uniquely determined. The function # is determined up to an arbitrary additive constant, &nd
the matrix ¥, up to multiplication from the fight by an arbitrary matrix of the argument

= 1/2 (uzl'l + 28 + A)t using this freedom, we can reconstruct the solution (A.4), (A.5) so
that it has a limit for k = 0. We have not done this, however, and in constructing the
solutions (3.20) - (3.26) for k # 0 we have used just the formulas (A.4), (A.5)(the intecated
transformation for k = 0 would not change anything in the solution except to redefine the
constants), The matrix ¥ for the flat medel can be found either by the method indicated ar
by direct integration of Eqs. (A.1) and (A.2). The result, which we have used in constructing
the solution [3.1), can be written in the form

¥ - [(zzﬂ) (a® + 282 + 12)]”2 . ¥y, = (eiezeanadyl

(A.6)

¥ 2

12=9 @ =tz 8 =172 (28 + 28 .

The further operations that lead to the solution are merely algebraic and are explained in
Ref. 1. We shall not repeat them here, but we point out the following important features.
Starting from the background metric (3.28) and the ¥ function (A.4) - (A.6), we arrive at
solutions in which the natures of the variables t and z are in a certain sense reversed.
Whereas in the background solutions (3.28) the matrix g has an isotropic cosmological sin-
gularity with respect to t and fictitious coordinate singularities with respect to z, in the
one-soliton solutions an isotropic physical singularity appears with respect to the space
variable 2z, and fictlous ones with respect to t. When we try to take the limit with respect
to s parameter to obtain the background metric we get instead of the metric coefficients g4
from Eq. (3.28) the same functions except that t and z are interchanged. Accordingly. to
recover the cosmological character of the model, one must interchange the coordinates t and z
and at the same time choose the corrvect sign of the metric coefficient £ (so that the variatie
t.will actually be timelike). This must be done first in the vacuum solution, and then one
can turn to the solution with matter.

The final sequence of operations is:

1 - With the metric (3.28) and the potential (3.22} we determine the vacuum background solution
(the coefficient F for changing from £ to £, is given by Eq. (4.2));

2 - We apply the one-soliton perturbation to the vacuum solution,

3 - In the result so found we make the interchange t + z, z = t and choose the correct sign
of £.;

4

we again return to the solution with matter with the same potential (3.22).

The transition coefficient F remains unchanged, since the function a is not changed by the
interchange t + z , z » t, and Eq. (2.15) is also unchanged when there is no chiﬁge of the
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potential ¢. But the solution of these equations, i.e., the coefficient F itself, does not
have this symmetry, and F(T,z} # F(z.t), which is important in this sequence of transfor-
mations. After these operations we obtain a solution which can be reduced to the form (3.20)
by a certain linear transformation (with constant coefficients) of the variables x and y.

Analogous operations in the case of the flat model give the metric (3.1). As was pointed out
in Sec. 3, a transition from (3.20) to (3.1) in the limit k+0 exists, although it does not
exist in explicit form between Eqs. (A.4), (A.5) and (A.6). The linear transformation of the
coordinates x, y is made from considerations of convenience of the final result; only after
this transformation do we get the metric (3.20), in which: (a) there is a transition in the
limit with respect to a parameter to the form (3.28); (b) the coefficient g,; goes to zero at
z = 0, and (c) for the closed model the coefficient 8, BOES to zero for kz = n/2. For the
flat model the analogous transformation serves to satisfy conditions (a) and (b) and to make
the behavior of the metric for z + = the same as in the background solution (2.24).

In the investigation of the properties of the solution (3.20) - (3.26) it is necessary to use
certain identities connecting the functions y (Eq. (3.25))and R (Eq. {3.26)}. We give them
here. The function u is a solution of the quadratic equation

2

u - (a% kZcos2y-28) urat-0 (A.7)

where o and B are given by Eq. (A.5). Besides this, the following two identities hold:

2

ro u'l

tgzkt+uR = agk'z(cos 2y + cos 2kz)} L,
(A.8)

ru o+ afp”l R ctg? xt = ag k™% (cos 2y - cos 2kz) L

from which one further relation can easily be derived:

1

ru (cos’y - sin®kz) + uR(sin’y - sin’kz) = ag(zkz)' sinl2kz(r sin’kt-R cos’kt) . (A.9)

The quantity L in Bq. (A.8&) is determined by Eq. {3.21).
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IV - TWO-SOLITON WAVES IN ANISOTROPIC COSMOLOGY
IV¥.1 - INTRODUCTION

In the present chapter (which are based on paper (1}) we investigate a new exact wavelike
solution of gravitational-field equations in the framework of the inverse-scattering proeblem
technique.

This solution is a natural extension of a particular solution found by us and it describes the
propagation of two plane waves and their mutual interaction in an anisotropic cosmelogical
model, ’ .
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The exact two-soliton seolution for the metric tensor gph is obtained in sect. 2 according to
the integration scheme described in paper (1} and it is constructed by the use of the same
!otl,n,c)matrix function solved for in that article and related to a £ Kasner solution as the
background field.

The degree of deviation from the background metric is introduced as a soliton field defined
in sec. 3.

The behaviour of these field components is considered in detail in sec. 4 mainly in the
interesting region and for a characteristic class of cosmological models, i.e., for " Kasner
indices s1 and 54 both positive. The general case for s; larger than unity needs further in-
vestigation and will be discussed elsewhere,

In the limit z + t = one finds that the soliton field has not enough time to propagate  and,
therefore, the perturbation approaches zero.

In remote time, as t + =, the disturbance would decay and would disappear.

In the 1limit t + 0, near the cosmological singularity, the deviation is described by two
planelike positive disturbances approaching each other at the origin z = 0 and growing in
amplitude. For a class of cosmclogical models, when (3 - /5 }/4 > Sy ¥ 0, the soliton  field
approaches a finite minimal distance; for another class 1/2 > s, > (3 - /5 )/4, the two

solitons fuse into one soliton concentrated near the origin, in a time t; > 0; in the first
case the maxima propagate with a velocity less than unity, in the second with a velocity that
exceeds unity.

In the same limit t + 0, the £37 perturbation is described by twe negative disturbances
approaching each other and fusing into a concentrated solitom in a time t; > 0.The two-soliton
fieid for the mixed component consists of a negative and a positive disturbance whose se-
paration approaches a finite minimal distance % z; at t = 0.

Some interesting remarks on the behaviour of the initial time ty for different cosmological
models are given.

Finally the soliton fields are studied along the light-cone t = zz, t + «», where the pertur-
bation is shown to be maximal. Therefore, one may verify that the asymptotic propagation
velocity approaches the velocity of light.

This soliton wave solution on a homogeneous Kasner background may also be seen as a non-
trivial example of an inhomogeneous snisotropic cosmological model. We hope that this kind of
investigation may lead to the understanding of some open cosmelogical problems.

I¥,2 - THE BACKGROUND FIELD AND THE GENERAL SQLUTION

Let us consider the simplest homogeneous cosmological Bianchi type-I model in vacuum,i.e. the
Kasner solution, written in the following standard form:

- ds2 = - dtz + 12p5 dzz + TZPZ dy2 + P2 dxz , {z.1)

where the constants p;. P,. P3 satisfy the two relations
2 2 2
Py * Py * Py *P; *Py;rPyg=1 .

It is obvious that, after a time transformation, we can express our metric in the following
form:

2 2 2 0
- ds® = £, (- dtT ¢ Qz ) o+ gy 4%y dxy

i.e. 2 S%"‘S%"l Zs

254
- ds” =t {- dt2 1

vdzdyer Cayter Paxd . (2.2)
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where the constants $; and §, are related by only one constraint: 51 ¥}.2:k 1.

It is easy to show the relations with the previous parameters:

i-3 s S, (s i&l)
2 2 - .
pl [ ] _.z.__z_,.—_ . pz = —T__._._ ’ ps - T—-g-.- P (2.1.)
$; - 8, ¢ 1 $; -~ 5, ¢ 1 s, - 8, + 1

¥We will use this metric (2.2) in order to construct on this background our exact two-soliton
solutions. '

This solution is derived from a technique that has been explained in paper (1).
Two particular cases (sl = s, =1/2 and 5; = 1, 5, = 0) have been previously (1) considered;
here we will extend our investigation to the general case, i.e. when s, and s, are arbitrary

constants, but positive.

The calculation leads us to the following formula for the physical (1) metric tensor gﬁgh)and
the functiocn fph for {(a, b~ 1, 2):

t

25, 2 2 2.2 2 4s
g =t By s .(t_'n&L[sinzs -5 sinf (e (D) Mg sinz{I -
P
t2 - p% |42 2 .45 2
ﬂ_L ey () sin“e } o S)

p

28 2 2 2.2 2 is
h 2 LE__:nP ) inZs - L 20y - S Nt -
gy -t Ez + [}1n 8§ - =5 sin’(4 - 8) - (D) L0 sin? {]

0t Lg [p i 2} sin? 4, )

z 25 . . :
-5 Bty @ [tzsinu - 8) + p’sin (4 + a)] >

2s A 1. .
¢ Ly’ & Z [t‘ $in (¢ + 8) + p° sin (¢ - .s)] 1., (2.5)
2..2
w% 2; 231+32-1 2.60)
f [ T 0a
ph sin® g t (t® )zif‘4p‘ 2t*pcas 24)sin” &
s Dp . Ta 2s 1 sy 2
D= -t? ‘L:zi (t? - pPHP e -p? _;u% [Lo(§) lagd' & x:l } (2.6b)

where the arbitrary parameters are only three real constants: §,, w,, L

i* 7o°

We defined § = (s; - sZJ¢ * 8g.

The variables ¢ = ;(t,z) and p » p(t,z) are related to the complex quantity u =p exp (iﬁ?%:Z
that is defined (1) as follows: L
uz - 2(z - 1-2] A+ tz = [ .
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In the following we will assume that the real constant L is positive without loss of ge-
nerality, as well as Ly and &,.

From {2.7) one obtains

cos § = :22_:2_2. . . (2.8]
p
Zwi p

sin [ v . . {2.9)
t -0

Prom (2.7) and its conjugate equation one obtaing an implicit definition of the real function
p = p(t,x} and them from (2.8) and (2.9) a definition of ¢ =~ ¢(t.x).

]

1¥.3 - THE SOLITON FIELDS

Let us introduce the following soliton fields:

gph _ g0 gph o
§ = _a8 aa H.. = 12 (3.1)
aa ] ' 12 ~ *
%aa v B11822

where ggb is the background metric (2.2}.

These fields indicate a level of deviation from the original metric. Let us also introduce
the perturbation function

£ - £
Af = _Plr_‘l (3.2)
4]
2,.2
. sl+52—l .
where fo is the background function (2,2}, fo -t and fph is defined in (2.6a).

Then the exact formula for the perturbation functiom is

wi 4 4Dt ?
of = - —y— (P v Y % IR PV 4 )
sin 60 (t"=-p™)"(t " +p -2t"p cos Z¢)sin”¢

-1 . (3.%)
From (2.3) - (2.5) and (3.1) we found the general formulae for the perturbation fields Hop

2 2 is s, =

2 ..2 12 2, I 1 2
- . -p%)si 2.t z . -2t 2|
*'11'&2 £ 50 ) sine-sin’ (gee) |- {E-Egein Qfofs) t-Ly gy e . (3.4)

. -

- - ~ 4s s, -

L2 2 .2 2 2, ..2 4 1
- . - -2 2 .2
H22-§7 LE_UE_l sin25-51n2(¢-6)J- t -p }sin ¢ Lo (% t -Lotgﬂ pz . (3.5)

23 2s
7 2 2
Hy =t £ 52 sin ¢ (L, (%) _ [tzsin(¢-6]+pzsin(¢+5]_-] +L5‘(§) [tzsin{dwﬁjd-pzsin(‘-&]]}.(3.6)

~

Due to the complexity of the general behaviour of the solitons we will first consider  those
cases in which the 51 and s, parameters are both positive and, due to the symmetry between
components 11 and 22, we will discuss in detail the cases 0 < 8, <8y and we will easily
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extend the results to the cases S5 > s1 > 0,

The most general case (52 < 0, s > 1) will be discussed elsewhere,
IV.4 - THE ASYMPTOTIC BEHAVIOUR OF THE SOLITON FIELD IN THE REGION 5, > $
Case z + & = |

Let us first consider the asymptotic behaviour in regions far from the light-cone: for the
limits lz| >> t and [z]| >> w,, i.e. for z v 1t =,

From (2.7) - (2.9) one finds

t? ¥i .
p = .,  sin ¢ = —2— cos ¢ =+ 1 {4.1)
2iz| [z] ’

Then, introducing these results in formulae (3.4) - (3.6), one obtains

.

4s 2

¢ s wg "%z REA w3 2 '
H = (o) () ——g— Lg|* ctgdyt—ylctg dy-1) ] . (4.2)
i sin 5, z z _
¢ (2As| w, 4sq -2] 12w w% N
Hppm () [ —g— 1 [-15h crasgr Seere®sp-13] .3
i sin” 5 A . z FOEITRTT S
2s o \és-{_' .
| -As ¥y, 2 t As -1 My L}
Hz *smog |” (r—) Lo 9+ w7 1y (:) b (4.4
where 4s = S) - 8, > 0.
In order to aveid "bad behaviour" of this asymptotic for vanishing values of sin g and in

order to preserve the z negative-positive symmetry, we assume 8y = ms, in the following.
From (4.2) - {4.4) one verifies that all the Hah fields are vanishing as z goes to infinity.
This result confirms the smooth connection with the background metric i.e, Hab =0,
From (3.3) one obtains in the limit z + w

af =0 . )
Therefore, also the fph and f, are smoothly connected as z goes to inifinity.
In particular, the first nonvanishing term of Af is proportional to tz/zz
Case t » =,
Let us now consider the behaviour of the soliton ficlds in a finite region of space a long
time after the singularity: t »> |z| and t »> . i.e. t =+ =, From relations (2.7) - (2.9)

one obtains

P =t - W, sin ¢ = 1' , cos ¢ = ’ (3.6}

i s

Fad Y]
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Substituting these results in formulse (3.4) - (3.6) one obtains

w L2 -1

Hll = _....i _g_._ ' * {4_7)
t L0 + 1 :

Hpp * - Hyp v (4.8)
dzw. 1 .

Hp = ”;zi as(Ly + L7t L : (4.9)

In order to see the z-dependence of Hy; or sz, one should take inte account the expansion of
(3.4), (3.5) up to the fourth power in z. Clearly all the soliton fields are vanishing in the
limit t + « and this result confirms the “good behaviour” of such solutions.

Finally we consider the perturbation function Af in the present limit:

(L + Lgh?

M
4 sin 60

-1>0 {(4.10)

(in this paper &, = wsz) This pesitive variation of the function fph indicates an energetic
exchange between solitons and background due to the wave propagation. The same effect was
described in {1).

Case t + 0 .

Let us now consider the behaviour near the singularity when t << [z| and t << 2w; i.e., when
t+0.

In this case one may consider the global z-dependence of the soliton fields B.p-
From relations {2.7) - (2.9) one cbtains in the limit

2 W,

pw sin ¢ = m—it— cos ¢ = z . (4.11)
2 "i * z v HE + zz "i + Z

From these limits and formulae (3.4} - (3.6) one finds

. . 2 Lo
Hll-(?%_)-st (_i:if)?’z Ln —__!_ '!__Z ctgs+ —?——z(ctgzi-l;] . (4.12)
i wirrT sin"§ CIwy+z
H, = (yi-) 225 -(—z—zw'1 )2511.‘2 1 1.1 -2;—zz-ctgé* _2_22 (crgls-1) 4.13)
22 ‘2?‘: _wid-z 0 sin“s | w 2 L2 ) )
- 2 - - 2
-85 WYiS2  sin(é-¢)1., t 18|, "i %2 -1 sin(8+4)
B, ,=( ) - ) L e R Oy I R ) L . (4.14)
12 7_— 3 w§+zz 0 “sin? § 2wy " w§+zz_ sin” &
Y
sin? § - sin? 8y
Af = — {4.15}

i 2
sin 60
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One can see that the behaviour of the soliton fields is dominated in Hyy and H;, by the first
time-dependent term. These quantities diverge as time approaches zero. The reason of this
fictitious singularity (not to be confused with the true cosmological singularity) is related
to the choice of the metric form. Indeed, if one intreduces a co-ordinate transformation of
the form x] = (x +y)/2, x'; = {x - ¥}/2, one can write a new expression in place of (2.2):

sz+sz-l

1*52 28y

s, - 2s 2s
-as? = - ¢ (@t?-dz8)+(t et Zy(axieaxdyezie 1ov %) axy ax, (4.16)

Then one will find for this new background Eup 2 physical solution g‘(ph) related to, g(gh) in
formulae (2.3) - (2.5):

. . dan,

+ (ph h h h
T R
R LR R I
R R |

In particular in the t + 0 asymptotic the soliton field will avoid the problem that we found

in (4.12) due to divergent behaviour of Hll‘

From definition (3.1) and {4.17) - (4.18) one obtains
H 1™ f]_(z) + 31(3) + Zhltz) . .-(43.20]
Hy, = £,(2) * g,(2) - Zhy(2) . ('4.'233__

For the mixed colponents of the soliton field one needs to redefine the formula as folloﬁl‘

gi(Ph) - g!
H, = ___U__l.Z_ =g @) - £(2) . (4.22)
812

where f£,(z) is the first term in square
bracket in (4.12}, 31[2] is the second
term in square bracket in (4.13) and
hl(z) is the first term in square bracket
in (4.14). Using the angle ¢ in place of
Z, one can rewrite these quantities in a
more compact form:

4s
sin z ]

£, (z)=12 - : (4.2%)
sin® & :

sinZ(¢-8) _ ,

g,(2) . (4.24)
sin® ¢
. Zsz . .
hy(2)=-Ly B _eesinldd) (4 25)
sin® &

(it is easy to verify that, in order to
have a determinant det i ™ t2 the re-

lation fy(g; + 1) = h1 should be and is FIGURE 1 - Schematical behaviour of the so
indeed satisfied). liton fields H11'H22'Hi2 as functions of the

co-ordinate z at the time t=0 in {a),(b)[c).
Let us describe schematically these  so- respectively,In this primed system,all o the
lutions (Fig. 1 {(a) - {c)): soliton fields have finite values and are

described by formulae (4.20) ~ (4.22).
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From inspection of formulae (4.12) - (4.14) and {4.20) - (4.22), one can see that Hil {-z) =
= Hi2(+ z) and Hiz(z) = Hiz {(=2).

Now that the nonsingular behaviour of the solution in a proper co-ordinate system is proved,
it is convenient to reconsider in dtail our previous dynamic solutions (4.12) - (4.14); we
will assume an arbitrarily small but finite time parameter in those formulae.

By inspection one sees that in the limit z + % = the power dependence in z is obviously the
same as the one obtained in the limit z + ¢ = in formulae (4.2) - (4.4).

The field H11 is composed of two terms: the first (dominant because it is proportional to
t_ZﬂsJ is fl(z); the second term is the second one in square bracket in formula (4.12) ;let us
indicate it by i (z). Then Hy; = (t/2w,) 7285 | £,(2) + 1;(2).

The analyses of the two functions and of their first derivatives lead us to the following
conclusions,

Case {a} - Two soliton fields, well separated in space, are created and move away from each
other symmetrically.

Case (b) - A double-soliten field, i.e. an overlapping of two solitoms, will appear and will
"split” into two independent ones that will move away one from the other.

Case (a} E—ZI!E >5, >0

By formulae (4.11) and (4.12) and their first derivatives in z one obtains the tipicd scenario
shown in figure 2.

The symmetry in positive and negative -values of z is preserved by our preéevious request %-wsz.
The maximum co-ordinates, z = % z,. are solutions of the equation dHllfdz = 0; from (4.12)
one obtains

.2 4s 5,5in2(¢+8)
- 280 0cpgs((xi) 2 A51LEsin 2¢-[252§:g '“5_|*[L‘ﬁ'g_r‘ -As sin2(¢+6)-\} - 0. {4.26a)
1

wisin®4 nl
In particular, for small enough time the
first term in square bracket will " be
dominant and, therefore (once we took into
account the trivial seclution z = 0,ctgé=0),
eq, (4.26a) reduces to

e

al

-~
L

(4.26b})

__«”/‘\\;5 From (4,26b) one may understand also the

7 existence of two characteristic solutions
i.e. cases (a) and (b). Indeed, when 1/2 >
> 5, > (3 - Y51/4, there is only one 50~
lution at z = 0 of (4.26a) and no solution
of (4.26b), while, if 0 < s, < (3 - /5)/4 ,

.4
alf——— e e ——
(ol e
-]
AN
]
.'-:lb
[

FIGURE 2 - Evelutionary behaviour near there are two distinct solutiens at z =% Z,
the singularity (t = 0) for the soliton in (4.20b).

field Hll(z] defined by formula {4.12),

for those cosmological backgrounds in When &, ¥ ms,, one should adapt formulac
which {3 - v5)/4 > 5, > 0 under the (4.12) - (4.14) in order te aveid the fic-
assumption of plane symmetry [Hll(z) = titious singularity when sin § = 0 for some
= Hll(-z], i.e. 85 = 7s,. (a) t = 0, (b} z., 1£ 0 « 50 < Znsz.there is no need of any

to= 2wy, () t > 2w;. correction and from (4.12) and (4.26) one
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obtains two asymmetric perturbations schematically shown in figure 3.

As in the previous case 23+ I, 23 are
defined by eq. (4.26b). These situations am
more complicated and less easy to analyse,
Therefore, we will again assume 60 = %S
what follows.

21n

Then it is possible to describe the world-

line of the peak from the first derivative

in z of the soliton field Hyq in (4.12).
FIGURE 3 - As in fig. 2, under the less If (3 - /5)/4 > s, > 0, then the world-Ines
restrictive conditions GO#nsz; t =0, of the peak are shown in fig. 4.

The two peaks move immediately due to the
fact that both terms (in (4.26a)) n square
brackets have the same sign near the

erigin.

1 3-45
Case (b) F 2 By P ey .

FIGURE {} - The world-lines of the maximum

In this case the soliton field H11 will be, values of the soliton field Hyy for the
at the very beginning, an overlapping of case (3 - /5)/4 > s > 0, 8§ = ws,: this
the two disturbances. Taking the first soliton field is depicted in fig. 2.

derivative and putting it equal to zero,
one may find an initial time, ti,when the
maxima at the origin split into two
distinct peaks. When t + t; << 1 and for
z + 0, one finds (4.26a)

- 2 -1/24s
t ﬁsz - 432 -1 (4.27)
- |u (4.
: il - = 18 :
o 0 Taa - sp¥

Clearly, when the right-hand side in (4.27) exceeds unity, the approximation & no onger valid,
Apparently this is always the case as As + 0, i.e. when 5, * % .

In reality the situation is more complicated: if, for example, L0 = 1, then there is a finite
limit of (4.27) as 4s + 0. Indeed

7 1/24s
t 1 - A5 - AS 3
1M e = lim (=22 oo = exp |- _l . (4.28)
As+0 “Yi  As+D I: (1 + as) :| [ '2-"
From (4.28) it is clear that, if Ly < 1, then ti/2wi is always less than unity and (4.27)
always holds.
We can describe t/Zw for the three possible situations Ly > 1, Ly < 1 snd Lo = 1. (Note

that, when As = 0, L0 = 1, eqs. (2.3) - (2.6) give the trivial solution g ab * |[I:'h})
Figure 5 describes the cases Lg > 1 .

Figure 6 describes the cases L, < 1,

In general one may describe the dynamical behaviour of the soliton field Hyy as};hown in Fig.
7.



monotonic function of LD if Ln < 1.
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The important point to stress from formula (4.27) and from diagram 6 is that ty

—— -

is not a

3 W K e
aa H
1 1 J_ L
500 [EE) [F- . S
5, 4
FIGURE 5 - The dimensionless initial time tiIZHi (at which the two solitons of Hyy decouple,
i.e., the time when the original scliton "splits" into two distinct sclitons) as a  function
arbhitrary

of the cosmological parameter As{or equivalently of 32). for various values of the

constant L,: Ly > 1. See formula (4.30} as well as fig. 7.

FIGURE 6 - As‘in fig. 5, for the

l..0 <1,

case

FIGURE 7 - As in fig. 2 when % > s, >
> (3 - /5)/4,
(@) t; >t >0 .

) t 3 ¢t;

(et > Zui .
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FIGURE 8 - The world-lines of the maximum FIGURE 9 - Evolutionary behaviour near the
values of the soliton field H11 for cases singularity (t = 0) for the soliton field
% > 8y > (3 - V5)/4, 60 * S, described sz(z) defined by formula (4.13} for the
in fig. 7. Subcases LO > 1 (1.h.s.) and entire range of values % > 8, > 0 under the
Ly <1 {r.h.8) are related to the values assumption of plane symmetry (60 - nsz).(a)
t,/2w, analysed in fig. 5 and fig. 6 and ty >t >0, (b) t 3 t,, (c) t> 2w,

described by formula (4.30). (a) Sy =
= (3= /5)/4, (b) 3> 5, > (3 - /5)/4,(c)
s; 87 » W@ sy=7 -

Indeed the world-line of the peaks of the solitons may be described in two situations: Ly > 1
or Ly < 1 (fig. 8).

Now we can consider the soliton field sz.
Prom eqs. (4.11) and (4.13) one obtains the general behaviour for sz shown in fig. 9.

Unlike the situation for H

no complications like case (a) arise for sz. when 5, is in the
Tange % >3, > 0.

11°

In analogy to Hll‘ for (1 + v%)/4 > 5, > % (i.e. (3 - /5174 < 8, < %) H,y, behaves as Hy, by
an interchange of s, with s,.

The world-line of the minima of the two solitons may be obtained by requiring dezldz = 0,i.e.

)

2 s, I ' '
-1 sin t ZAS -2 1 ctgé sin2{4-6) 2
-2w —z-’-ct 64 Yo L.“sin 2s -As|+]s - 4s sin“(¢-8)|} . (4.29
1 sin’s 8ot 'i) 0 .L lctgc } [ 2 ctgd ¢ ] ' )

(*)Note that {4.29) and (4.26a) are equivalent after the exchange srsl.uH—h.w -5,
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FI1GURE 10p -~ The dimensionless initial FIGURE 10p ~ As in fig. 10a when L, < .
time t1/2wi, at which the two solitons of
H,, decouple, i.e., when the original so-
liton "splits” into two distinct solitons,
as a function of the cosmological para-
meter As(or equivalently of sz). for
various values of the arbitrary constant
Lo: Lo > 1.
Here again the question arises of how long a time after t = 0 do the two negative sclitons

vsplit™; solving (4.29) in the limit z =+ 0, one finds (*)

4 2 -1/2As
t 32 (4.30)
- - *—r"'——‘ e
IEI 0 + Zs

This function may be described for the two cases: L0 > 1 in fig. 10a., L0 < 1 in fig. 10b.

One should remember that in fig. 10a, when t1/2ui exceeds unity. formula (4.3D) is no longer
valid, because it violates a previous assumption (t1 << Zwi).

In analogy with fig. 5, & the world-lines of the two negative peaks are sxn1lar to those des-
cribed in fig. 8 (Ly > 1, Ly < 1), when the range of s, is extended from Z > 54> {3 - JS]/d'n
% > 8, > 0.

Note that the limiting cases s5; = %. when Lo < l,are the same for t; in (4.27) and t; in
(4.30).

Finally let us consider the mixed component of the soliton field in formula (4.14), le.

Then one can see that the first term in square brackets is multiplied by the domlnant term
(t/Zw y© -85 ,ud it will be perturbed by the secomd term, proportional to [t/Zu ) as time
passes. The combined effect can be described dynamically (fig. 11).

As in previous cases one has to investigate the first derivative of le and, by requiring the
result to be zero, one may obtain the zeros of the maxima and minima; from formula (4.14) one
finds

(*)One obtains the same result from eq.{4.27) by the obvious following intercﬁang&:
S, ¥ 5y, As + - &s,
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FIGURE 11 - Evolutionary behaviour near the singularity (t = 0) for the mixed-component  So-
liton field letz) defined by formula (4.14) for the entire range of values of s,. (a) t = 0,
(b) t= Zwi, (c} t > Zwi .

2 2s .
- 5_.;-41;;5{ (2—) Losin 2 pesin(6-4)+ z‘_ —E! -5, ‘gts“‘ - ﬁs] +

w;sin &
s :
. (zi—il“s Lglsin ¢ sin(s+9) - 2[ —;3% +s —c%?ﬂ ~asly =0 . (4.31)
! - .

For t <« 2wi, i.e. when the Ffirst term is dominant, then (4.31) is equivalent to

ctgé ctg (8- . .
ctgs |:sz EE‘S - s, —Et—ﬂﬂ - As-| 0o . (4.32)

The zeros of the term in square bracket are the zeros + z;.

Contrary to previous cases (H;,. H,,) the disturbances described by H;, are created at a finite
distance and propagate (*) immediately after t > 0. In fig. 12 a typical world-line is shown
of the maxima and minima.

]if
/K
I!? F
FIGURE 12 - Typical world-lines of the FIGURE 13 - Spatial behaviour of the
maximum and minimum values of the mixed function Af defined in (4.15) near the sin

component of the soliton fidd H,, in Fig.1l. gularity t = O,

(*) With a8 veloacity less then unity.



- 112 -
From the asymptotic formila (4.15) for the deviation function Af we found in (4.15)

sin® § - sin’ &,
Af = >0 .

P4
sin 60
In the particular case when 85 = 0, i.e. §; = /2, 8f = 0 .
We can describe Af as function of space as shown in fig. 13.
We can summarize our analysis of the metric near the singularity as follows:
- the field H;; describes two summetric positive disturbances Hlltz) - Hllt-z] leaving each
other; in case (a)}, (3 - v5)/4 > s, >0, the two solitons appear separated from the
beginniang; in case (b), % > 5, > (3 - ¥5)/4, the two solitons overlap near the singularity

and decouple after an initial time t, described in fig. 5 and fig. 6;
1 4

- the field H,, describes two negative disturbances that appear overlapped and decouple after
an initial t, described in fig. 10a and 10b;

- the field H,, finally describes twe disturbances, one positive and one negative, at a finite
distance from the origin defined by eq. (4.32). In this case letz) = - le(-z).

The twe peaks move immediately away as shown in fig. 11 and 12.
The perturbation Af is static and is described in fig. 13.
Case t = |z|, t + =,
ﬁe investigate now the asymptotic behaviour of the soliton field along the light-cone.
From relations (2.7) - (2.9) we obtain
b=t - AT sinsp-/-::-ir , cos¢=1 . (4.35)

Then from the exact sclution {3.4) - (3.6} we obtain the following asymptotic expression for
the soliton fields:

. 2 -2
/W, |4 sin 28, + 2(L -L | 4 cos 2 &
Hy, = /3 T 2 7 ) * 'tl i | (4.34)
4 sin 60 + U‘o”‘o ) 4 sin® &4 +_(;.° * 1, _.-) .
W, [-4 sin 260 + Z(Lz— '1[ 4 cos 2 60 _'_ - U
4 sin’ey s u.(,«-l.° )2 L4 sin® 60*{1.0*1- }
-1 )
" L, - L ;
i 0 4] -
H,=-87/F . {(4.36)

-2 = v
4 sin® §) + (Lgol,")

One sees immediately that in this limit the typical power behaviour for the field is

1

[ P——

H
ab /T

while, if one reconsiders the previous limit (t + 0, z + ¢+ =, t + =} and requires t = |z].then

"

1
Hab ~F .

This means that the largest perturbation lies on the light-cone and, therefore asymptotically, .
the perturbation propagates at the velocity of light.
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In conclusion of this analysis one may calculate from (4.33) and the definition of Af in(S 3}
the perturbation in this limit:

-1,2 :
{Lg + Ly")
Af = ;._0_:._.2_'-‘__ > 1 . (4.37)

sin 60

This perturbation is larger than in other cases (*), i.e. for Af found in eq. (4.15) (t » 0),
eq. (4.10) (t + =}, eq. (4.5) (z + «) .

Therefore, it proves that the perturbation is localized on the light-cone in agreement with
the arguments just expressed for the soliton field Hipe

Therefore, asymptotically the soliton waves propagate at the velocity of light,
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(*)} If one indicates by 4§, the perturbation in light-cone in the lihxt {4 373, in the
t + 0 limiv (4.15), af, int +» = limit (4.10) and afl in the z + = limit. in (4 5) then
one obtains the disequality Afy > Af, > Afy > Af; .



