Nanomagnetism Part 4 — Learn from loops

Olivier Fruchart

Institut Néel (Univ. Grenoble Alpes – CNRS) Grenoble – France

http://neel.cnrs.fr

Micro-NanoMagnetism team : <u>http://neel.cnrs.fr/mnm</u>

Part IV : LEARN FROM LOOPS — Table of contents

Extract loop and moments

Extract magnetic anisotropy

Extract interactions and distributions

Understand magnetization processes

Analyse thermal effects

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-2

Part IV : LEARN FROM LOOPS — Extract moments, extrinsic effects (diamagnetism)

Diamagnetic substrate / holder

$$M(H) \leftarrow M(H) - \chi H$$

Problems :

- Quantitative compensation a priori difficult
- Approach to saturation difficult to investigate

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-4

Part IV : LEARN FROM LOOPS — Extract moments, extrinsic effects (diamagnetism)

Part IV : LEARN FROM LOOPS — Extract moments, paramagnetism

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-6

Part IV : LEARN FROM LOOPS — Extract moments, impurities and artifacts

Paramagnetic substrate / holder

Available online at www.sciencedirect.com

SCIENCE () DIRECT.

Journal of Magnetism and Magnetic Materials 301 (2006) 50-66

www.elsevier.com/locate/jmmm

Magnetism of cigarette ashes

Neli Jordanova^{a,*}, Diana Jordanova^a, Bernard Henry^b, Maxime Le Goff^b, Dimo Dimov^c, Tsenka Tsacheva^d

 \Rightarrow Be careful with : cleaness, tweezers, holders, ink, etc.

Artifacts in various techniques

- X-ray Magnetic Circular Dichroism (XMCD)
- Magneto-Optical Kerr Effect (MOKE)
- Lorentz microscopy

Etc.

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-7

Case of a bulk soft magnetic material

Hypotheses:

- 1. Use an ellipsoid, cylinder or slab along a main direction so that the demagnetizing field may be homogeneous.
- 2. Domains can be created to yield a uniform and effective magnetization Meff

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-8

Part IV : LEARN FROM LOOPS — Internal versus external field (2/4)

Case of an arbitrary material

- . Measure a hysteresis loop M₁(H_{appl})
- Internal field during loop: H_d=-N_j.M₁ (must be corrected to access intrinsic properties)
- 3. Plot $M_1(H_{appl}-NiM_1)$ $M_2(H_{tot})$

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-9

Part IV : LEARN FROM LOOPS — Internal versus external field (4/4)

Specific aspects to systems with non-ellipsoidal shapes

Part IV : LEARN FROM LOOPS — Table of contents

Extract loop and moments

Extract magnetic anisotropy

Extract interactions and distributions

Understand magnetization processes

Analyse thermal effects

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-12

Part IV : LEARN FROM LOOPS — Anisotropy, text-book hard axis

Grenoble, France

MAGNETICS

Part IV : LEARN FROM LOOPS — Anisotropy, some complications

Distribution

- Use area above curve
- Singular point detection for saturation field

G. Asti et al., J. Appl. Phys. 45, 3600 (1974)

0 Q1 Q2 Q3 Q4 Q5 Q6 07 Q8 09 10 11 12 13 14 15 H²_{HA}

BaFe O

<u>d'M</u> dH'

100

50

25

FIG. 5. Experimental plot of d^2M/dH^2 vs $H = H_{ext} - NM$ for an isotropic polycrystalline sample of BaFe₁₂O₁₉. H_{ext} is the applied field, and N denotes the demagnetizing factor of the sample.

Residual hysteresis

 $\Rightarrow Compute anhysteretic curve M(H) \rightarrow [M(H_{up}) + M(H_{down})]/2$

Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.IV-15 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Part IV : LEARN FROM LOOPS — High order angular anisotropy

institut Grenoble, France

Part IV : LEARN FROM LOOPS — Table of contents

Extract loop and moments

Extract magnetic anisotropy

Extract interactions and distributions

Understand magnetization processes

Analyse thermal effects

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-18

Part IV : LEARN FROM LOOPS — Interactions and distributions : the issue

Different loops with distribution

Superposition

Possible effects that may arise

- Distribution of coercive fields
- (Dipolar) interactions
- The loops of the macrospins are slanted

WIEEE MAGNETICS YEARS

Institut Néel

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-19

Part IV : LEARN FROM LOOPS — Interactions and distributions : reversible versus irreversible 📁 👚

Grenoble, France

Grenoble, France

1964 2014

MAGNETICS

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-22

Part IV : LEARN FROM LOOPS — Interactions and distributions, minor loops

Part IV : LEARN FROM LOOPS — Interactions and distributions : Henkel plots

Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.IV-24 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Part IV : LEARN FROM LOOPS — Interactions and distributions : Preisach model and FORC

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-25

Part IV : LEARN FROM LOOPS — Interactions and distributions : Preisach model and FORC

Recent 'rediscovery' or 're-interpretation : the FORc diagrams:

First-Order Reversal Curves

 \rightarrow Outline distribution of switching field and bias field

C. Pike et al., J. Appl. Phys. 85, 6668 (1999)

Ex : arrays of parallel permalloy nanowires wire increasing diameter

Part IV : LEARN FROM LOOPS — Table of contents

Extract loop and moments

Extract magnetic anisotropy

Extract interactions and distributions

Understand magnetization processes

Analyse thermal effects

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-27

Part IV : LEARN FROM LOOPS — Initial magnetization curve

Part IV : LEARN FROM LOOPS — Angular dependence of coercivity

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-29

Part IV : LEARN FROM LOOPS — Table of contents

Extract loop and moments

Extract magnetic anisotropy

Extract interactions and distributions

Understand magnetization processes

Analyse thermal effects

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-30

Part IV : LEARN FROM LOOPS — Temperature and time dependence

Grenoble, France

Can be used for:

- \Rightarrow Estimating Hc(T)
- Estimating long-time relaxation
- Determination of dimensionality

Note: of the order of domain wall width δ

MAGNETICS

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.IV-31 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Part IV : LEARN FROM LOOPS — Superparamagnetism, extract volume

