Nanomagnetism Part 2 — Domains and domain walls

Olivier Fruchart

Institut Néel (Univ. Grenoble Alpes – CNRS) Grenoble – France

http://neel.cnrs.fr

Micro-NanoMagnetism team : <u>http://neel.cnrs.fr/mnm</u>

80

Part 1 : basics of micromagnetism – Simple models of magnetization reversal

Part 2 : non-uniform magnetization in nanostructure: domains, domain walls

-91

Μ.

 μH

 ΛM

 $\mu_0 H$

Recoil 1

Part 3 : Low-dimensions,

interfaces and heterostructures

Part 4 : Learn from

hysteresis loops

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-2 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

➡ Walls and domains in films and nanostructures

➡Near single domains

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-3

Pt.II : DOMAINS and DOMAIN WALLS — Brown paradox

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-4

Pt.II : DOMAINS and DOMAIN WALLS — From bulk to single-domain

Bulk material

Numerous and complex magnetic domains

FeSi soft sheet

A. Hubert, Magnetic domains

Mesoscopic scale

Small number of domains, simple shape

Microfabricated dots Kerr magnetic imaging

A. Hubert, Magnetic domains

Nanometric scale

Magnetic single-domain

Nanofabricated dots

Sample courtesy : N. Rougemaille, I. Chioar

🕏 Domain walls define length scales

E Institut Néel _{itut} Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-5

Pt.II : DOMAINS and DOMAIN WALLS — Magnetic length scales

Anisotropy exchange length

 $E = A (\partial_x \theta)^2 + K \sin^2 \theta$ Exchange Anisotropy J/m J/m³

Anisotropy exchange length: $\Delta_{\rm u} = \sqrt{A/K}$

 $\Delta_{\rm u} \approx 1 \text{ nm} \rightarrow \Delta_{\rm u} \geq 100 \text{ nm}$

IEEE

MAGNETICS

Institut Néel nstitut Grenoble, France

Dipolar exchange length

$$E = A \left(\partial_x \theta \right)^2 + K_{\rm d} \sin^2 \theta$$

Exchange Dipolar energy $J/m \rightarrow J/m^3$

 $\rightarrow J/m^3$ $K_d = \frac{1}{2} \mu_o M_s^2$

Dipolar exchange length:

 $\Delta_{\rm d} = \sqrt{A/K_{\rm d}}$ $= \sqrt{2A/\mu_{\rm o}M_{\rm s}^2}$

 $\Delta_{\rm d} \approx 3 - 10 \ \rm nm$

Single-domain critical size relevant for nanoparticules made of soft magnetic material

Often called Exchange length

Notice:

Other length scales: with field etc.

Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.II-6 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Simple model for a domain wall

Reduction in Coercive Force Caused by a Certain Type of Imperfection

A. Aharoni

Department of Electronics, The Weizmann Institute of Science, Rehovot, Israel

(Received February 1, 1960)

As a first approach to the study of the dependence of the coercive force on imperfections in materials which have high magnetocrystalline anisotropy, the following one-dimensional model is treated. A material which is infinite in all directions has an infinite slab of finite width in which the anisotropy is 0. The coercive force is calculated as a function of the slab width. It is found that for relatively small widths there is a considerable reduction in the coercive force with respect to perfect material, but reduction saturates rapidly so that it is never by more than a factor of 4.

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

➡ Walls and domains in films and nanostructures

➡ Near single domains

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-9

Pt.II : DOMAINS and DOMAIN WALLS — Nucleation and propagation (2/3)

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-10

Pt.II : DOMAINS and DOMAIN WALLS — Nucleation and propagation (3/3)

PLI : DOMAINS and DOMAIN WALLS – Nucleation and propagation, films (1/3)

 Nucleation of new reversed domains

 Fatuzzo/Labrune/Raquet model

$$dN = (N_0 - N)Rdt$$
 N: number of nucleated centers at time t

 $N = N_0[1 - exp(-Rt)]$
 N_0 : total number of possible nucleation centers

 R : rate of nucleation
 R: rate of nucleation

 Radial expansion of existing domains
 $\sigma_n = \sigma - \sigma_c = (v_0^2/T)[t_0 + t]^2 - \pi r_c^2/T$
 r_c : radius of critical nucleus

 $A = \int_0^t \left(\frac{dN}{dt}\right)_s(\sigma_n)_{t-s}ds + \frac{\pi r_c^2}{T}N(t)$
 V_0 : speed of propagation of domain wall

 Growth of existing nuclei

 Network nuclei

 Method for existing nuclei

 Description of existing nuclei

 Method for existing nuclei

 N and possible nucleation

 A = $\int_0^t \left(\frac{dN}{dt}\right)_s(\sigma_n)_{t-s}ds + \frac{\pi r_c^2}{T}N(t)$

 Growth of existing nuclei

 Method for exi

+

+

Pt.II: DOMAINS and DOMAIN WALLS - Nucleation and propagation, films (2/3)

MAGNETICS

Depending on structural defects Depending on measurement dynamics

Pt.II : DOMAINS and DOMAIN WALLS — Nucleation and propagation, films (3/3)

Theory

Experiment

Grenoble, France

1964 2014

MAGNETICS

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-14

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

➡ Walls and domains in films and nanostructures

➡Near single domains

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-15

Pt.II : DOMAINS and DOMAIN WALLS — Flux-closure states (1/6)

Pt.II : DOMAINS and DOMAIN WALLS — Flux-closure states (2/6)

1964 2014

MAGNETICS

Institut Néel Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-17 Grenoble, France http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Flux-closure states (4/6)

Sandpiles for simulating flux-closure patterns

Pt.II : DOMAINS and DOMAIN WALLS — Flux-closure states (5/6)

MAGNETICS

institut Grenoble, France

Easy axis of **weak** magnetocrystalline anisotropy

Easy axis of **weak** magnetocrystalline anisotropy

Large dots

→many degres of freedom

- ⇒many possible states
- ⇒history is important
- →even slight perturbations can influence the dot (anisotropy, defects, etc.).

Pt.II : DOMAINS and DOMAIN WALLS — Flux-closure states (6/6)

Microscopic contribution to perpendicular anisotropy

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-24

Pt.II : DOMAINS and DOMAIN WALLS — Range of dipolar field

 Dipolar fields are weak and short-ranged in 2D or even lower-dimensionality systems
 Dipolar fields can be highly non-homogeneous in anisotropic systems like 2D
 Consequences on dot's non-homogenous state, magnetization reversal, collective effects etc.

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-25

Pt.II : DOMAINS and DOMAIN WALLS — The single-domain limit (1/2)

Pt.II : DOMAINS and DOMAIN WALLS — The single-domain limit (2/2)

1964 2014 MAGNETICS

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-29

Pt.II : DOMAINS and DOMAIN WALLS — Deviations from the macrospin (1/5)

Configurational anisotropy: deviations from single-domain

Strictly speaking, 'shape anisotropy' is of second order:

$$E_{\rm d} = \frac{1}{2} \mu_{\rm o} \left(N_x M_x^2 + N_y M_y^2 + N_z M_z^2 \right)$$

2D: $\mathcal{E}_{d} = V K_{d} \sin^{2} \theta$

In real samples magnetization is never perfectly uniform: competition Num.Calc. (100nm)

between exchange and dipolar

Configurational anisotropy may be used to stabilize configurations against switching

Higher-order contributions to magnetic anisotropy

M. A. Schabes et al., JAP 64, 1347 (1988)

WIEEE 5

Z Institut Néel uu Grenoble, France R.P. Cowburn et al., APL 72, 2041 (1998)

Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.II-30 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Deviations from the macrospin (2/5)

Polar plot of experimental configurational anisotropy with various symmetry

Color code: strength of anisotropy in a given direction Radius: size of measured pattern **Direction:** direction of measurement

R.P. Cowburn, J.Phys.D:Appl.Phys.33, R1-R16 (2000)

Institut Néel institut Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-31

http://perso.neel.cnrs.fr/olivier.fruchart/slides

00

250nr

100nn

250nm

250nm

0

0

1µm

 $1 \mu m$

 $1 \mu m$

1µm

 $1 \mu m$

Pt.II : DOMAINS and DOMAIN WALLS — Deviations from the macrospin (3/5)

Grenoble, France

Pt.II : DOMAINS and DOMAIN WALLS — Deviations from the macrospin (4/5)

Hypotheses Soft magnetic material

Not too small neither too large nanostructures

W

Pt.II : DOMAINS and DOMAIN WALLS — Deviations from the macrospin (5/5)

institut Néel Grenoble, France

IEEE

MAGNETICS

1964 2014 Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-34

Pt.II : DOMAINS and DOMAIN WALLS — Coercivity from bulk to single-domain

FIG. 1. Particle size dependence of essentially spherical, randomly oriented, iron particles. Calculated curve given by solid line. Diameters $D = \hat{d}_v$. Data at 76°K obtained from electron microscopic examination \blacksquare , calculated from I_r/I_s vs temperature O, and from smoothed data of H_{ci} vs D

E. F. Kneller & F. E. Luborsky,

Particle size dependence of coercivity and remanence of single-domain particles, J. Appl. Phys. 34, 656 (1963)

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-35

http://perso.neel.cnrs.fr/olivier.fruchart/slides

Towards

Pt.II : DOMAINS and DOMAIN WALLS — Cellular automata

Alternative to strips and domain walls to convey and process information

Here : majority gate

A. Imre et al., Science 311, 205 (2006)

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-36

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

➡ Walls and domains in films and nanostructures

➡Near single domains

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-37

Pt.II : DOMAINS and DOMAIN WALLS — Domain walls in 1D structures (tracks)

D. A. Allwood et al., Science 309, 1688 (2005)

Towards data 3D storage?

S. S. P. Parkin, Science 320, 190 (2008) Scientific American 76 (2009) + patents (IBM)

Z Institut Néel uu Grenoble, France Memory (current-driven)

L. Thomas et al., IEEE International Electron Devices meeting (2001)

Take-away meessages

Section 2.1. Section Contract Section 2.1. S

Sield-driven and later spin-torque-driven

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-38

Pt.II : DOMAINS and DOMAIN WALLS — Domain walls in tracks (2/7)

Transverse versus vortex wall (simulations)

Thin and narrow strips

к. мсміспаеі & M. Donahue, IEEE Trans. Mag. 33, 4167 (1997)

Y. Nakatani et al., J. Magn. Magn. Mater. 290-291, 750 (2005)

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-39

Pt.II : DOMAINS and DOMAIN WALLS – Domain walls in tracks (4/7)

Pt.II : DOMAINS and DOMAIN WALLS — Domain walls in tracks (5/7)

Perpendicular magentization

Nucleation

Use large pads as domain reservoirs

Pt\Co[0.6]\AlOx - Kerr

Courtesy S. Pizzini (NEEL)

Magnetic imaging

Narrow domain walls (2-20nm) ⇒ Shape influenced by disorder

Pt\Co[0.6]\AIOx – MFM O. Fruchart, unpublished

500 nm

Ta\CoFeB[1]\MgO - NV center S.P. Tetienne t al., Science 344, 1366 (2014)

Institut Néel Grenoble, France Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-43 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Domain walls in tracks (6/7)

Becker-Kondorski model : domain wall to be moved along a 1d landscape

WIEEE MAGNETICS SEAPS

Institut Néel stitut Grenoble, France Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.II-46 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (2/4)

Pt.II : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (3/4)

Pt.II : DOMAINS and DOMAIN WALLS — Precessional motion of domain walls (4/4)

Motion below the Walker field

Steady-state azimut : $\sin 2\varphi = \frac{2H}{\alpha M_s}$

High speed $v = |\gamma_0| \Delta_W H / \alpha \sim 1/\alpha$

 Δ_{W} Is a dynamic parameter and is not the DW width at rest

Motion above the Walker field

Precession with non-steady angular speed

 \Rightarrow Soon recovers speed $v \approx \alpha |\gamma_0| H \Delta_W$

 $v_{\rm W} = |\gamma_{\rm o}| \Delta_{\rm W} M_{\rm S}/2$ Walker speed limit

Experimental confirmation

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-49

Pt.II : DOMAINS and DOMAIN WALLS – Bloch points

Fig. 2. MFM image of an array of permalloy dots 1 μm in diameter and 50 nm thick.

The central magnetic vortex may be magnetized up or down using a perpendicular field

T. Shinjo et al., Science 289, 930 (2000) T. Okuno et al., JMMM240, 1 (2002)

Theory and simulation

Simulation

Olivier Fruchart - IEEE Magnetics 7th School - Rio, Aug 2014 - p.II-50 http://perso.neel.cnrs.fr/olivier.fruchart/slides

Pt.II : DOMAINS and DOMAIN WALLS — Overview of magnetization textures

Grenoble, France

Pt.II : DOMAINS and DOMAIN WALLS — Table of contents

Brown paradox

Nucleation and propagation

➡ Walls and domains in films and nanostructures

➡Near single domains

Domain walls in tracks

Skyrmions

Olivier Fruchart – IEEE Magnetics 7th School – Rio, Aug 2014 – p.II-52

Pt.II : DOMAINS and DOMAIN WALLS — Dzyaloshinskii-Mmoriya and skyrmions (1/2)

Pt.II : DOMAINS and DOMAIN WALLS — Dzyaloshinskii-Mmoriya and skyrmions (2/2)

